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Companies may choose to outsource parts, but not all, of their call-center operations. In the

course of studying contact centers in the telecommunications and financial services industries, we

have observed the following (apparently) common scheme. A company classifies its customers as

high or low-value, serving the former with their “in house” operations and routing the latter to

an outsourcer. Typically, the company imposes service-level constraints on the time each type of

customer waits on hold.

This paper considers four schemes for routing low-value calls between the client company and

the outsourcer. These schemes vary in the complexity of their routing algorithms, as well as the

sophistication of the telephone and information technology infrastructure they require of the two

operations. For three of these schemes, we provide a direct characterization of system performance.

For the fourth, most complex, scheme we provide performance bounds for the important special case

in which the service requirements of high and low-value callers are the same. These results allow us to

systematically compare the performance of the various routing schemes. Our results suggest that, for

clients with large outsourcing requirements, the simpler schemes that require little client-outsourcer

coordination can perform very well.
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Davidson Center for Service and Operations Management, the Center for International Business Education and Research

at the University of Washington, and NSF Grant SBR-9733739.



1 Introduction

Many companies choose to outsource parts of their call-center operations. That is, rather than serving

their own customers, they subcontract part or all of their capacity to a company that specializes in

call-center operations. Recently, this type of outsourcing has grown to become a global industry. For

example, Convergys Corporation, a US-based outsourcer with worldwide operations, reported 2003

revenues of $1.5 billion for its Customer Management Group, a division with 25,000 customer service

representatives (CSRs) [16, 17]. Wipro Spectramind, a large India-based outsourcer, reports that it

has 9,300 employees who handle more than 4 million calls and 500,000 emails each month [50].

A common reason for outsourcing is to lower costs. Human resources expenses associated with

CSRs typically account for 60–70% of call-center operating expenses. Outsourcers often have lower

wage structures, which allow them to operate with a lower cost per call. For example, Wipro

Spectramind reports that it typically provides 75% savings in labor costs to its clients [49].

At the same time, companies that use outsourcers may continue to serve a significant fraction of

their incoming calls. In one scheme, they classify their customers as belonging to one of two types:

high-value customers, who are currently or potentially profitable; and low-value customers, who will

never be highly profitable. The high-value customers are considered to be an important corporate

asset, and they are served by “in house” operations that the service provider trains and manages

itself. The low-value customers are considered to be a “nuisance” and are routed to an outsourcer

that provides a lower cost to serve but has less highly trained CSRs. Modern telephone infrastructure

enables the identification of arriving calls as coming from high or low-value customers, as well as the

subsequent routing of calls.

Typically, client companies impose service-level constraints on the time each type of call spends

waiting on hold. Common constraint forms include upper bounds on the average speed of answer

(ASA), the average time calls spend waiting on hold, as well as upper bounds on fractiles of the

waiting-time distribution. An example of the latter is “80% of the calls must be handled in 20

seconds or less.” These types of constraints are applied to both low-value and high-value customers,

although the specific level of service may differ. Together with projections concerning the arrival

rates and service times of incoming calls, these service-level constraints drive lower bounds on the

numbers of CSRs that must work during a given period.

Given adequate capacity to serve high-value customers, the service provider’s pool of CSRs will

generally have additional capacity available to handle some low-value calls as well. This may be due

to shift scheduling constraints, which force some planning periods to have a higher-than-necessary

staffing levels. (See §3.2 in Gans et al. [20].) Even when the number of in-house CSRs is the absolute

minimum required to meet the high-value customers’ service-level constraint, they may still have

some capacity to take the low-value calls opportunistically, rather than on-demand.

Service providers have economic incentives to make use of this excess capacity. Outsourcing
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Figure 1: Routing Schemes for Type-L Calls

contracts commonly include volume-based (per-call) or capacity-based (per-agent-per-hour) fees.

(For example, see [28, 29].) By taking some low-value calls in-house, the service provider can reduce

some of these variable outsourcing costs. In addition, a company may consider its in-house CSRs to

be of higher quality than its outsourcer’s – with better training, a more neutral accent, etc. – and

prefer to use in-house CSRs as a first choice, when they are available.

The use of an outsourcer to handle some, but not all, low-value customers requires coordination

between the two companies, both in the staffing of agents and in the routing of calls. Figure 1 depicts

four schemes that vary in both the degree of coordination and resulting system complexity. In all

of the figure’s panels, type-H calls come from high-value customers and type-L calls from low-value

ones.

Panel (a) displays the simplest scheme. Here, type-H calls are served by a dedicated group of in-

house CSRs, and any excess in-house capacity is dedicated to serving low-value calls. An “overflow”

scheme is used for routing low-value calls: if an arriving type-L call finds a type-L, in-house CSR
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idle, then the call is taken in house; otherwise it overflows to the outsourcer, where it queues and is

served first-come-first-served (FCFS). We call this an overflow scheme with dedicated agents, or a

dedicated-overflow scheme.

Note that, because capacity for high and low-value customers is not pooled under this dedicated

scheme, there will be instances at which both type-H calls are queued and in-house CSRs, dedicated

to type-L calls, are idle; and vice versa. At these moments, a more complex routing scheme might

be able to take fuller advantage of idle in-house capacity, thereby reducing outsourcing costs.

Panel (b) depicts a scheme which more fully uses idle in-house CSRs by pooling high and low-

value customer calls, but it does not pool capacity between the client company and the outsourcer

(i.e. it uses an overflow scheme). We call this a pooled-overflow system.

Routing decisions in the pooled-overflow system can be much more complex than in the dedicated

scheme. In particular, the decision to process an arriving type-L call in house now depends on the

state of all in-house CSRs, rather than just the availability of (at least) one of the in-house CSRs

that is dedicated to type-L calls.

At the same time, under both of the overflow schemes there will still be instances at which there

exist idle in-house CSRs and type-L calls queued at the outsourcer. Panel (c) displays an alternative

scheme in which in-house CSRs dedicated to handling type-L calls are pooled with the outsourcer’s

agents, and they can all access a common type-L queue. In this system, the routing options for

type-L calls take the form of an “inverted V” network. (See Garnett and Mandelbaum[22], Gans

et al. [20].) Accordingly, we call this scheme inverted-V. To minimize the number of type-L calls

handled by the outsourcer, the client company can specify that type-L calls are preferentially routed

to its CSRs whenever one of the agents it has dedicated to type-L calls is available.

Panel (d) depicts a routing scheme that pools across all in-house CSRs, as well as between the

client company and the outsourcer. As in the inverted-V scheme, type-L calls are held in a common

queue, and as in the pooled-overflow scheme all in-house CSRs may take both type-H and type-L

calls. Given the form of the routing options, this scheme is commonly called an N-network scheme.

(See Garnett and Mandelbaum[22], Gans et al. [20]).

We note that the four schemes represent choices concerning the pooling of capacity across each

of two dimensions. The left two panels’ schemes partition in-house capacity between type-H and

type-L calls, while the right two panels’ systems pool in-house capacity across both types of calls.

Similarly, the top two panels show schemes in which type-L calls overflow from the in-house group

of CSRs to the outsourcer, while the bottom two panels depict schemes in which a common queue

allows the pooling of type-L capacity across the two organizations. Thus, the N-network shown in

panel (d) has the most ability to pool, but this benefit comes at the cost of more difficult routing

controls and more stringent requirements for telecommunications infrastructure.

In the overflow schemes, information concerning the occupancy of in-house CSRs is available from

the client company’s local automatic call distributor (ACD), and routing decisions are executed by
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the client company’s private automatic branch exchange (PBX). Thus, the decision of whether to

serve an arriving type-L call in house or to have it overflow can be made and executed locally at the

client, without having to coordinate with the outsourcer.

The inverted-V network requires that type-L calls be held in a common queue and routed directly

either to the client’s or outsourcer’s CSRs. This can be accomplished by having the client’s and

outsourcer’s common long-distance carrier, the so-called public service telephone network (PSTN),

hold all type-L calls in queue. (In voice over internet protocol (VOIP) systems, the role of the PSTN

can be played by a so-called “hosted service” provider. See Dawson [18].) Whenever a type-L call

arrives, the PSTN polls, first the client then the outsourcer, to see if an agent is available. Similarly,

whenever an agent becomes available at either the client or the outsourcer, that call-center’s ACD

polls the PSTN to deliver a call, if there exists any in queue.

While the inverted-V scheme requires that calls be queued at the PSTN, it does not require

complex coordination among the client, the outsourcer, and the long-distance carrier. Furthermore,

the extra costs of holding calls at the PSTN may be offset by reductions in line charges associated

with the overflow schemes. Specifically, each time a call overflows from the client to the outsourcer,

an extra telecommunications link is established. That link may be owned by the PSTN, in which

case a charge is incurred per call, or it may be privately owned by the client and outsourcer.

Finally, full operation of the N-network requires that detailed occupancy information be collected

from the client’s and outsourcer’s ACDs and fed back to a PSTN, which then uses the agent and queue

occupancies at both locations to make complex routing decisions. Occupancy updates and routing

decision must be made in real time, each time a call arrives or a CSR becomes free. Thus, while

the N-network shares the line-charge advantage of the inverted-V scheme, the telecommunications

and information technology infrastructure required to support its remote coordination is significantly

more sophisticated.

In this paper, we investigate the relative effectiveness of these schemes, analyzing Markovian

versions of the systems. The arrival processes of type-H and type-L calls are stationary and Poisson,

with respective rates of λH and λL. Service times of type-H calls are independent and identically

distributed (i.i.d.), exponentially-distributed random variables with mean 1/µH , and type-L service

times have i.i.d., exponential distribution with mean 1/µL. The arrival processes and service times

are assumed to be independent of each other, as well as of the system state.

Our main focus is the important special case in which service-time distributions and service-level

standards are uniform across calls. When the contents of high and low-value customers’ calls are

roughly the same, we can directly characterize effective routing and staffing policies for the inverted-

V and both overflow systems. When, in addition, service-level standards are the same across types,

we can construct simple bounds on the behavior of the N-network that are useful in comparing its

performance with those of the other three schemes.

In Section 3 we focus on the dedicated-overflow and inverted-V schemes. For both of these system,
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the queues for type-H and type-L calls are effectively decoupled, and most performance statistics can

be calculated straightforwardly.

The analysis of the pooled-overflow scheme is more complex, and in Section 4 we determine

an effective class of routing policies, along with a related performance characterization. Among all

possible routing controls, we consider a class of policies which give priority to type-H calls. We show

that, among type-H priority policies, easily-computable “randomized threshold reservation policies”

minimize the overflow of type-L calls to the outsourcer, subject to the service-level constraint on

type-H calls. This result is an analogue of that of Gans and Zhou [21], though the proof approach

for the current system differs from, and is much more direct than, that used in the previous paper.

In addition we show that, as the arrival rate of type-L calls grows large, the performance of these

priority policies quickly converges to the global optimum, which does not assume priority routing of

type-H calls.

In Section 5 we use the pooled-overflow scheme’s results to construct a lower bound on outsourcer’s

workload under the N-network scheme. For the case in which service rates and delay guarantees for

type-H and type-L calls are equivalent, we also show that the number of CSRs required at the

outsourcer can be bounded below by the number derived from an analogous M/M/m/∞ queue.

This bound is in the spirit of a long line of pooling results, going back (at least) to Smith and

Whitt [42].

Section 6 then uses the results of §3–5 to construct a numerical comparison of the three simpler

schemes, relative to the N-network’s lower bounds, along two performance dimensions: required

outsourcer workload and number of outsourcer CSRs. The results are positive and, in some cases,

surprising.

• For large systems the pooled-overflow scheme performs quite well in both dimensions. Here,

outsourcer workloads are nearly equal to the lower bound on that for the N-network system.

Similarly, the number of extra outsourcer agents, above and beyond the lower bound, never

exceeds more than one or two, a less-than 1% difference.

• In contrast, neither the dedicated-overflow nor the inverted-V systems achieves this level of

performance in large systems. Even in very large examples, with roughly 5,000 agents required

at the outsourcer, both of these schemes required 5 or 6 CSRs more than the associated lower

bounds. This gap appears to reflect these systems’ inability to pool type-L service across the

many in-house CSRs dedicated to type-H calls.

• At the same time, there are cases in which both the dedicated-overflow and inverted-V systems

outperform the pooled-overflow scheme. In particular, in examples in which the total stream

of type-L calls is not as large – requiring less than 250 CSRs – and the fraction of type-L calls

sent to the outsourcer is low – less than 50% – the pooled-overflow scheme may not minimize

either the number of outsourcer CSRs or outsourcer’s offered load.
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These last results provide a numerical counterexample which indicates that the type-H priority

policies we consider for the pooled-overflow system are not necessarily optimal for smaller problem

instances. It is also interesting to note that two distinct effects appear to degrade the pooled-overflow

scheme’s performance.

One is a first-order effect concerning the relative scales of the type-H and type-L arrival processes.

Specifically, when λL � λH , type-H arrivals appear to crowd out in-house type-L service in the

pooled-overflow system, and both the type-L load offered to the outsourcer, as well as the required

number outsourcer CSRs, can be strictly greater than those for other routing schemes.

The other is a second-order effect, driven by the regularity of the type-L overflow process. As the

outsourcer’s workload drops to less than half of the raw type-L load, the burstiness of overflows in

the pooled-overflow system increases and appears to drive the need for extra outsourcer staffing, even

when the pooled-overflow system minimizes the outsourcer’s offered load. Furthermore, analysis of

the overflow process suggests that it is an increase in the coefficient of variation of the inter-overflow

time, rather than serial correlation, that drives the extra staffing.

Finally, in many of the examples, the performance of the simple dedicated-overflow system is

identical to or nearly the same as that of the more complex inverted-V scheme. This occurs when

type-L arrival rates are high, a result that is not unexpected: high arrival rates imply that the

performance losses, due to the dedicated-overflow scheme’s inability to queue type-L calls in house,

are low.

Our results are interesting at a number of levels. First, they show that the simple, suboptimal

routing schemes we describe can perform nearly optimally in large systems. This result is positive

in that these less complex schemes can be both less expensive and less difficult to coordinate, when

compared with more sophisticated routing schemes. Our results also echo those in Wallace and

Whitt [45], which shows that, given uniform service requirements across call types, adequate staffing

levels, rather than sophisticated routing policies, can drive effective performance in skills-based

routing systems. Lastly they suggest that, for large systems, variants of the pooled-overflow scheme,

in particular, can be useful in determining outsourcer staffing, as well as for making call-routing

decisions. In Section 7 we discuss these findings, as well as the limitations of our results.

We note that, while the numerical comparisons among the routing scheme are necessarily limited

to systems with uniform service rates, the simpler routing schemes can be generalized to consider

cases in which µH may not equal µL. They can also be extended to cases in which the outsourcer-

CSRs’ service rate for type-L calls may differ from that of in-house CSRs. The appendices includes

the formal development and all the proofs of the performance analysis results presented in the body

of the paper, as well as some extensions for these more general systems.

The remainder of the paper is organized as follows. In Section 2 we review the related literature.

Sections 3–5 develop the performance analysis of the various systems, and Section 6 describes the

results of numerical tests that compare the various routing schemes. Section 7 concludes with a
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discussion of the results.

2 Literature Review

There is little in the academic literature that is specifically devoted to call-routing problems related

to outsourcing. Akşin et al [1] and Ren and Zhou [40] address the related issue of contract design

for call-center outsourcing, their models suppressing the queueing-control aspects of the problem

on which we focus. Papers, such as Cachon and Harker [12], Benjaafar et al. [9], and Chevalier et

al. [14], address contract issues related to outsourcing in a more stylized setting.

In contrast, there are many papers related to call-routing in call-centers. We review the various

groups in turn.

A recent paper by Wallace and Whitt [45] develops and analyzes the performance of a family

of heuristics for staffing and call-routing in call centers that use skills-based routing. The policies

analyzed in [45] differ from those we analyze; for example, they do not provide the performance

guarantees that we seek. At the same time, both the paper’s assumptions – that all call-types share

the same service requirements – and its broader conclusion – that elaborate routing policies need

not be necessary to obtain near-optimal system performance – are echoed in our assumptions and

results.

The pooled-overflow routing scheme analyzed in Section 4 is most closely related to papers by

Bhulai and Koole [10] and Gans and Zhou [21], which model the mixing of high-priority, inbound

calls with that of lower-priority work, such as “callbacks” or emails. The papers assume, however,

that there exists an infinite backlog of low priority work, and therefore their system dynamics differ

somewhat from those in the current paper. Nevertheless, both [10] and [21] determine effective

policies that are analogues of the policies identified in this paper.

More generally there exists a growing literature on work-routing and capacity pooling in customer

contact centers. Papers by Green [24], Stanford and Grassmann [43], and Shumsky [41] model call-

routing systems whose structures are closely related to ours. Tekin et al. [44] analyzes the impact

of pooling, without dynamic routing, in multi-skilled centers. There also exists a growing body of

work which uses asymptotic (rather than exact) analysis of routing policies, as both the offered load

and the number of CSRs become large. Recent examples include Armony [3], Armony et al. [25],

Armony and Maglaras [4, 5], Harrison and Zeevi [27], and Atar et al. [6]. A more general discussion

of the application of these types of asymptotic results can be found in Gans et al. [20].

A long stream of work in telecommunications and, more recently, in call centers analyzes the

behavior of overflow systems. For example, Matsumoto and Watanabe [35] and Meier-Hellstern [36]

represent multiple stages of overflow and model overflow from one stage to the next as a Markov

Modulated Poisson Process (MMPP). Papers by Pinker and Shumsky [38], Koole and Talim [31, 32]

and Chevalier and Tabordon [15] perform approximate analysis of overflow schemes for skills-based
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routing in call centers. All of these papers model overflows from one group to another as occurring

in only one state, when all servers in the group are busy. Because overflows in the pooled-overflow

system can take place in an infinite set of states, our analysis is somewhat different and more complex.

We use generating functions to solve the infinite sets of equations.

3 Dedicated-Overflow and Inverted-V Network Systems

In this section we describe our analysis of the two routing schemes in which the client maintains

separate groups of CSRs, one dedicated to handling type-H calls and the other to type-L. The

analysis assumes that the number of in-house CSRs, mI , is known, as are the arrival and service

rates. It then characterizes two measures of system performance: the outsourcer’s offered load of

type-L calls, as well as the minimum number of outsourcer CSRs it requires to meet the service-level

constraint for type-L calls.

3.1 Dedicated-Overflow System

Consider a client company which elects to use the dedicated-overflow scheme shown in panel (a) of

Figure 1. The company partitions its mI in-house CSRs into two groups: mH CSRs are dedicated

to the service of type-H calls and mL = mI −mH CSRs to the type-L calls.

The queueing system for type-H calls becomes a simple M/M/m/∞ queue. We can then use

the well-known Erlang-C formula, together with the “Poisson arrivals see time average” (PASTA)

property, to determine common measures of customer delay upon arrival. (See Kleinrock [30] and

Wolff [51].) Because delay measures are decreasing in the number of servers, the client company can

choose mH to be the minimum number of servers that meets its service-level target.

The type-L arrivals to these in-house CSRs behave like an M/M/m/m system, the Markovian

version of an Erlang-loss system. Therefore, the rate at which calls arrive to the outsourcer is simply

λLB(RL,mL), where RL = λL/µL and B(RL,mL) is the Erlang-B quantity. (See Kleinrock [30].)

In turn, per-call costs associated with outsourcing are straightforward to calculate.

The calculation of the number of CSRs required at the outsourcer requires more work, however.

First, the service-level requirement at the outsourcer must be adjusted to account for the fraction of

calls, 1 − B(RL,mL), that were handled in house with no delay. For example, if the original upper

bound on average delay is ASA∗, then an average delay of at most ASAO = ASA∗

B(RL,mL) is required

at the outsourcer. More difficultly, the arrival process is not Poisson. Rather, it can be a bursty

process, which implies that the number of CSRs required at the outsourcer may be higher than that

required for a Poisson arrival with equivalent rate.

Given a fixed number of agents, m, one can use one of several approaches – such as that of

Meier-Hellstern [36] or simulation – to calculate the service-level obtained at the outsourcer. In turn,
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one can search for mO = min{m |E {delay} ≤ ASAO}, the required outsourcer staffing level. In

Section 6 we use simulation to search for mO.

3.2 Inverted-V Network for Type-L Calls

In the inverted-V network, shown in panel (c) of Figure 1, the client company again partitions its

mI in-house CSRs into two groups: mH CSRs are dedicated to the service of type-H calls and

mL = mI −mH CSRs to type-L calls. As in the dedicated-overflow scheme, the queue for type-H

calls behaves as an Erlang-C system.

The inverted-V system differs from the dedicated-overflow system in the treatment of type-L

calls. In the dedicated overflow scheme, in-house throughput of type-L calls was straightforward to

calculate, while the determination of the number of CSRs required at the outsourcer required more

work. In the inverted-V system, the reverse is true.

More specifically, given mO outsourcer CSRs, type-L occupancy in the inverted-V scheme is that

of an Erlang-C system with offered load RL = λL/µL and mL + mO servers. Thus, to determine

required outsourcer staffing, we first calculate m∗ = min{m |E {delay} ≤ ASA∗} and then set

mO = (m∗ −mL)+.

In contrast, the determination of the in-house throughput of type-L calls requires that we keep

separate track of in-house and outsourcer CSRs. Appendix A contains the state transition diagram

of a small inverted-V system.

Let ξi,j,k be the steady state probability that there are i in-house and j outsourcer CSRs busy

and k type-L calls waiting in queue. Then
∑∞

k=0 ξmL,mO,k is the probability that all mL + mO

servers are busy, which is the same as that for a simple Erlang-C system: C(RL,mL + mO). Given

C(RL,mL+mO), one can invert the remaining (mL×mO) matrix of balance constraints to determine

the remaining ξi,j,0s and, in turn, the throughput of type-L calls in house:

mL · µL · C(RL,mL + mO) +
mL∑
i=0

mO∑
j=0

i · µL · 1{i + j < mL + mO}ξi,j,0 , (1)

where 1{ · } is the indicator function. The overflow rate to the outsourcer is then λL, less the quantity

calculated in (1).

4 Pooled-Overflow System

The pooled-overflow scheme shown in Figure 1’s panel (b) is more complex for the client company to

implement. In the dedicated-overflow and inverted-V schemes, type-H service levels were maintained

by simply segmenting the in-house CSRs, at the cost of a loss of capacity pooling. In the pooled-

overflow scheme, the system can regain the benefit of pooled in-house capacity, but incoming type-L
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calls must be overflowed to the outsourcer – in sufficient quantities and at the right times – so that

the type-H service level constraint continues to be met.

In this section, we consider policies that minimize the overflow of type-L calls, subject to a service-

level constraint on type-H calls. We note that this objective minimizes per-call outsourcing costs,

rather than the number of outsourcer CSRs. In Section 6 we will return to numerically investigate

how this approach affects outsourcer staffing levels.

The remainder of this section is dedicated to the analysis of in-house routing policies for type-L

calls. In Section 4.1 we demonstrate that, among type-H priority policies, a simple class of threshold

policies is optimal, and we indicate how the thresholds can be calculated. In Section 4.2 we show

that, as λL →∞, the routing policy is globally optimal, among non-priority policies, as well.

4.1 Randomized Threshold-Reservation Policies

As noted in the introduction, this routing problem is an analogue of a system analyzed in Gans and

Zhou [21]. The essential difference between the two is the behavior of type-L calls. In the current

model, type-L calls arrive according to a Poisson process and overflow to the outsourcer if not put into

service immediately. In [21], however, the behavior is less complex: there exists an infinite backlog

of type-L calls, and one can be put into service at any time. In fact, the infinite-backlog system

can be viewed as a special case of the current problem, one in which λL → ∞. (See Proposition 2,

below.) Despite this difference, we can apply the approach of [21] to show that a simple class of

threshold-based policies is optimal in the current problem.

We begin with some definitions. A routing policy is type-H priority if it puts arriving type-L calls

into service only when there are no type-H calls waiting to be served. It is type-H work-conserving

if type-H calls never wait in queue when there are idle CSRs, and it is stationary if its actions at a

given epoch are history-independent.

It can be shown that, among type-H priority policies, there exist stationary, type-H work-

conserving policies that are optimal. Furthermore, such an optimal policy can be determined using

a linear program with O(m2
I) variables and O(m2

I) constraints. This characterization holds for the

more general case, in which µH may or may not equal µL, as well as a broad range of service-level

constraints. Given the similarity of the problem to [21], we save a formal discussion of this analysis

for Appendix F.1.

Here, we further characterize this class of optimal policies for the special case in which µH =

µL ≡ µ and the type-H service-level constraint is stated in terms of ASA, the average delay in queue.

The use of type-H priority, type-H work conserving policies implies that there are never both idle

CSRs and type-H calls in queue. Thus, we can represent the state space (after actions are taken)

using one dimension: states s ∈ {0, . . . ,mI − 1}, have (mI − s) idle servers and no type-H calls in

queue, while states s ∈ {mI ,mI +1, . . . , } have no idle CSRs and (s−mI) type-H calls in queue. The
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use of stationary policies implies that routing decisions are based only on the current system state,

s, and it allows for the randomization between the two actions available in each state: accepting or

rejecting the incoming type-L call. We let ps (s ≤ mI − 1) be the stationary probability that an

arriving type-L call that finds the system in state s is routed to an in-house CSR.

…0 1 2
λH+ p0λL

µH

mI-1
mI µH3µH2µH

mI+1mI

λH+ p1 λL λH+ p2 λL λH+ pmI-1 λL λH λH

mI µHmI µH

…
(mI-1) µH

λH+ pmI-2 λL

Figure 2: After-Action State Transition Diagram of CTMC

Figure 2 shows the transition diagram of the resulting continuous time Markov chain (CTMC).

This is a simple birth and death process whose tail states, s ≥ mI , behave like those of an M/M/1/∞
system with arrival rate λH and service rate mIµ. For ρ = λH

mIµ < 1, the system is stable, no matter

what the choice of the routing probabilities, (p0, . . . , pmI−1).

For any fixed set of routing probabilities, (p0, . . . , pmI−1), we can determine ξs, the steady-state

probability that the CTMC is in state s, for all s, using the birth-and-death process’s local balance

equations:

ξmI =

[(
mI−1∑
s=0

mI−1∏
i=s

(i + 1)µ
λH + λLpi

)
+

1
1− ρ

]−1

, ξs =

{
ξmI

∏mI−1
i=s

(i+1)µ
λH+λLpi

∀0 ≤ s < mI ,

ξmI ρ
s−mI ∀s ≥ mI .

(2)

Because the state space is defined in terms of system occupancy, it is convenient for us to account

for type-H calls’ service-level constraint in terms of occupancy as well, and we can use Little’s Law

to find D∗ = λH ·ASA∗, the average number in queue that corresponds to the target ASA.

We formulate a simple nonlinear program to find an optimal policy. Our original objective – to

minimize the overflow rate of type-L calls – is equivalent to the minimization of system idleness:∑mI−1
s=0 (mI − s) ξs. In addition, for stationary policies, the upper bound on the average number in

queue becomes D∗ ≥
∑∞

q=0 q ξmI+q = ξmI

∑∞
q=0 q ρq = ξmI d̃(ρ), where d̃(ρ) = ρ

(1−ρ)2
.

Therefore, the constrained optimization problem can be specified as the following non-linear

program (NLP):

min

{
mI−1∑
s=0

[
(mI − s) ξmI

mI−1∏
i=s

(i + 1) µ

λH + λL pi

]}
(3)

s. t.

ξmI =

[(
mI−1∑
s=0

mI−1∏
i=s

(i + 1)µ
λH + λLpi

)
+

1
1− ρ

]−1

(4)

d̃(ρ) ξmI ≤ D∗ (5)

0 ≤ pi ≤ 1, ∀i ∈ {0, . . . ,mI − 1}. (6)
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Theorem 1

Suppose that ρ < 1. If the NLP (3)–(6) is feasible, then there exists a policy with the following form

that is optimal: there exists a single L ∈ {0, . . . ,mI − 1} such that i) if L > 0 then pi = 1 for all

i ∈ {0, . . . , L− 1}; ii) if L < mI − 1 then pi = 0 for all i ∈ {L + 1, . . . ,mI − 1}; and iii) pL ∈ [0, 1].

We call the class of policies defined in Theorem 1 randomized threshold reservation policies. They

are completely defined by the threshold, L, and the associated probability, pL, and we will also refer

to them as (L, pL) policies. One may think them as reserving mI − (L + pL) CSRs to handle type-H

calls.

A sketch of the proof of the optimality of (L, pL) policies is as follows. Given any feasible set of

routing probabilities, p, with elements pi < 1 and pi+1 > 0 for some i, we can construct an alternative

set, p′, with p′i > pi and p′i+1 < pi+1, such that: 1) both p and p′ obtain the same ξmI ; and 2) p′

obtains a strictly better objective function value than p. This implies that p cannot be optimal.

Therefore, any optimal set of routing probabilities must fall within the class described in Theorem 1.

While the NLP formulation (3)–(6) is useful in identifying the class of (L, pL) policies as optimal,

we need not solve it explicitly to find the optimal L and pL. In particular, the following monotonicity

property implies that the optimal (L, pL) policy can be found via line search in pseudo-O(m2
I) time.

Proposition 1

System idleness (3) is strictly decreasing in pi and ξmI (4) is strictly increasing in pi for all i.

4.2 Effectiveness of Type-H Priority Policies

So far we have assumed that priority is given to type-H calls. While this priority occurs naturally

in many practical situations, it is also worthwhile asking how well type-H priority policies perform

relative to some global standard.

The globally optimal throughput performance of these systems is not generally known, but we

can construct an upper bound on the global optimum. In this subsection we present this bound and

use it to test how well optimal type-H priority policies perform. In fact, our tests show that, when

λL is large relative to other event rates, system performance is quite close to the upper bound.

More specifically, in [21] we show that there exist type-H priority policies that are globally optimal

for the extreme case in which “λL =∞”. We can show that the performance of this system provides

an upper bound on the optimal system performance for any λL < ∞. Moreover, the upper bound

becomes tight as λL →∞.

Proposition 2

Let λL =∞ denote a system in which there always exists a type-L call waiting to be served.

12



i) The globally optimal type-L throughput when λL =∞ is at least as great as the globally optimal

throughput for fixed λL <∞.

ii) The optimal type-H priority throughput for fixed λL < ∞, is at least as great as λL
λL+λH+mIµ

times the throughput achievable when λL =∞.

Thus, for λL that is “large” with respect to λH , µ, and mI , the performance of type-H priority

policies should be excellent. A natural next question is “how large is ‘large’?” The results of

numerical tests indicate that the numbers are quite reasonable. (See Appendix B.2.) For small

in-house systems, requiring 20 type-H CSRs, a load of low-value calls that is five times that of the

high-value calls is nearly optimal. Given the “80–20” maxim, that 20% of the customers provide

80% of the value to a company, this appears to be a quite reasonable balance. Furthermore, as

the scale of type-H traffic grows, the relative level of type-L traffic required to obtain nearly-optimal

performance systematically declines. In large systems, requiring hundreds of type-H CSRs, low-value

arrivals need only be half the rate of high-value traffic in order to provide excellent performance. Thus,

when µH = µL, type-H priority policies should have excellent, if not globally optimal, performance

for relatively large systems.

5 N-Network Scheme

The controls needed to optimally manage the N-network scheme are more difficult to determine than

those of the previous three schemes. While our analysis of the pooled-overflow system tracked the

occupancy of in-house CSRs, that for the N network requires that we track server occupancy both

in-house and at the outsourcer, as well as queue lengths for type-H and type-L calls. (Shumsky [41]

provides an approximate evaluation of the N-network for a fixed routing policy.)

Therefore, rather than attempting to directly determine the optimal performance of the N-

network, we develop bounds on its performance. In Section 6 we then use these bounds to assess the

relative effectiveness of the three other outsourcing schemes.

A simple bound on the minimum number of agents required at the outsourcer can be constructed

using the performance of an M/M/m/∞ system. This bound requires that µH = µL ≡ µ and that

ASA targets are the same for both type-H and type-L calls:

Proposition 3

Consider an N-network with arrival rates λH and λL, service rates µH = µL ≡ µ, mI in-house CSRs,

mO outsourcer CSRs, and a common service-level constraint, ASA∗, on the average delay of both

type-H and type-L calls.

i) If there exists a call-routing policy which meets the service-level constraint in this N-network,

then an Erlang-C system with arrival rate λH + λL, service rate µ, and mI + mO servers will
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satisfy the service-level constraint as well.

ii) The maximum in-house throughput of type-L calls in the N-network is bounded above by the

optimal in-house throughput of type-L calls in an analogous pooled-overflow system with λL =∞
and mI in-house CSRs.

Thus, given uniform service rates and ASA limits, a fully-pooled system will require no more out-

sourcer CSRs than its N-network analogue. Similarly, the performance of the pooled-overflow system

with λL =∞ provides an upper bound on in-house type-L throughput – equivalently, a lower bound

on the outsourcer’s offered load of type-L calls – in the N-network scheme. We note that part (ii) of

Proposition 3 does not require that the call types’ service-levels constraints be the same.

The type of pooling result stated in part (i) has a long history, going back at least to Smith and

Whitt [42], and it is the assumption behind the recent performance analysis of policies for skills-based

routing in Wallace and Whitt [45]. At the same time we note that, when assumptions concerning

the uniformity of service requirements are violated, pooling need not be advantageous, at least in

FCFS systems. For example, see Mandelbaum and Reiman [34] and Whitt [46].

Given the proposition’s assumptions, we can use the associated fully-pooled system to calculate

a simple lower bound on required outsourcer staffing. First, we let R = (λH + λL)/µ and find

m∗ = min{m > R |E {delay} ≤ ASA∗} in the Erlang-C system. Then we let mO = m∗ −mI be the

lower bound.

Finally, we note that, together, the results of Section 4.2 and Proposition 3 suggest that, for

systems with large λL, the throughput performance of the pooled-overflow system should be very

good. In terms of the outsourcer staffing level, however, it is not clear how well the pooled-overflow

scheme compares with the N-network and its lower bound. It is possible, for example, that in

maximizing the throughput, the threshold reservation routing policy used in the pooled-overflow

system creates very bursty overflow to the outsourcer and cause the staffing requirement to be much

higher than the lower bound on the N-network.

6 Performance Comparison of the Four Outsourcing Schemes

In this section, we compare the performance of the four outsourcing schemes along two dimensions:

the number of CSRs required at the outsourcer and the type-L throughput that the outsourcer must

serve. We begin by noting that there exist two orderings of the performance achievable by the

systems, represented by the two paths depicted in Figure 3. Because, in general, pooling provides

the better usage of existing capacity, performance should improve along each path.

The first set of orderings is indicated by the solid arrows. Because the dedicated-overflow system

is obtained by using a specific routing policy within an inverted-V system, and an N-network can be

feasibly operated as an inverted-V scheme, the performance improvement along the path is obvious.
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Figure 3: Potential Performance Orderings Among the Four Outsourcing Schemes

Note also that the ordering holds on a sample-path basis, without regard to the specifics of the arrival

processes or service-time distributions.

The second potential set of orderings is indicated by the dashed arrows. The N-network may

be operated as a pooled-overflow system, so it outperforms the pooled-overflow system. In theory,

a similar ordering should also exist between the pooled and dedicated overflow schemes, but the

particular pooled-overflow scheme studied in this paper, which restrictively assumes type-H priority,

is not guaranteed to outperform the dedicated-overflow scheme on either performance dimension.

Thus, there exist a number of questions regarding the performance of the various routing schemes,

including the following: 1) How do the simpler routing schemes compare with the lower bound for

the N network? 2) How does the pooled-overflow scheme compare with the dedicated-overflow

and inverted-V systems? 3) How much worse does the dedicated-overflow scheme perform, when

compared to the inverted-V? 4) In which cases does one scheme perform better or worse? Why? In

this section we use numerical examples to provide insights into these questions.

6.1 Numerical Tests and Results

We report the results of a suite of 45 test cases. The examples assume that type-H and type-L

calls have a common mean service time and service-level standard: µ−1 = 3.33 minutes per call,

and ASA∗ = 0.5 minutes. We then systematically vary the type-H and type-L arrival rates, as

well as the in-house staffing level, mI , relative to the type-H offered load. Type-H arrival rates of

λH ∈ {6, 30, 150} per minute cover small, medium, and large in-house systems with offered loads

RH = λH/µ = {20, 100, 500}. Type-L loads, RL = λL/µ, are scaled so that they range from one

order of magnitude below to one order of magnitude above that for type-H arrivals: RL/RH ∈
{0.1, 0.5, 1.0, 2.0, 10.0}. Numbers of in-house CSRs, mI , are roughly 5%, 25%, or 50% above mH ,

the minimum required to meet the type-H service-level constraint of a thirty-second ASA.

In all four schemes, we analytically determine the in-house throughput and overflow rate of

type-L calls. For the inverted-V system, as well as the lower bound on the N-network scheme,

numbers of outsourcer CSRs are analytically determined; for the dedicated-overflow and pooled-

overflow schemes, simulation is used to determine minimal outsourcer staffing.

15



Example Parameters Required Outsourcer CSRs Outsourcer Type-L Load (CSRs)
RH RL mH mI D-O P-O V N D-O P-O V N

1 20 2 23 24 3 3 3 1 1.3 0.8 1.3 0.0
2 20 2 23 29 1 1 0 0 0.0 0.2 0.0 0.0
3 20 2 23 35 0* 1 0 0 0.0 0.0 0.0 0.0
4 20 10 23 24 12 11 12 10 9.1 7.2 9.1 6.8
5 20 10 23 29 7 7 7 5 4.8 3.7 4.7 1.0
6 20 10 23 35 3 3 1 0 1.2 1.2 0.5 0.0
7 20 20 23 24 22 21 22 20 19.0 17.0 19.0 16.8
8 20 20 23 29 18 16 17 15 14.4 12.1 14.2 11.0
9 20 20 23 35 12 11 11 9 9.0 7.4 8.7 5.0
10 20 50 23 24 53 51 53 50 49.0 46.9 49.0 46.8
11 20 50 23 29 48 46 48 45 44.1 41.3 44.1 41.0
12 20 50 23 35 42 40 42 39 38.3 35.5 38.2 35.0
13 20 200 23 24 204 202 204 201 199.0 196.8 199.0 196.8
14 20 200 23 29 199 196 199 196 194.0 191.1 194.0 191.0
15 20 200 23 35 193 190 193 190 188.1 185.1 188.0 185.0
16 100 10 104 109 8 10 8 6 5.6 5.1 5.5 1.0
17 100 10 104 130 0* 1 0 0 0.0 0.3 0.0 0.0
18 100 10 104 156 0* 0* 0 0 0.0 0.0 0.0 0.0
19 100 50 104 109 49 48 49 46 45.1 41.5 45.1 41.0
20 100 50 104 130 29 30 28 25 24.9 22.9 24.5 20.0
21 100 50 104 156 6 9 2 0 4.1 5.2 1.4 0.0
22 100 100 104 109 100 98 99 96 95.1 91.2 95.0 91.0
23 100 100 104 130 79 78 78 75 74.3 70.8 74.1 70.0
24 100 100 104 156 53 53 52 49 49.0 46.1 48.4 44.0
25 100 200 104 109 200 197 200 196 195.0 191.1 195.0 191.0
26 100 200 104 130 179 177 179 175 174.1 170.3 174.1 170.0
27 100 200 104 156 153 151 153 149 148.3 144.6 148.1 144.0
28 100 1000 104 109 1001 998 1001 997 995.0 991.0 995.0 991.0
29 100 1000 104 130 980 977 980 976 974.0 970.0 974.0 970.0
30 100 1000 104 156 954 951 954 950 948.1 944.1 948.0 944.0
31 500 50 506 531 30 38 29 25 25.9 25.6 25.5 19.0
32 500 50 506 633 0* 0* 0 0 0.0 0.0 0.0 0.0
33 500 50 506 759 0* 0* 0 0 0.0 0.0 0.0 0.0
34 500 250 506 531 230 230 230 225 225.1 219.4 225.0 219.0
35 500 250 506 633 129 131 128 123 124.0 120.1 123.4 117.0
36 500 250 506 759 13 21 2 0 10.4 15.1 1.7 0.0
37 500 500 506 531 481 478 481 475 475.1 469.1 475.0 469.0
38 500 500 506 633 379 377 379 373 373.3 367.7 373.1 367.0
39 500 500 506 759 254 252 253 247 248.0 243.1 247.3 241.0
40 500 1000 506 531 981 977 981 975 975.0 969.0 975.0 969.0
41 500 1000 506 633 879 875 879 873 873.1 867.2 873.0 867.0
42 500 1000 506 759 753 749 753 747 747.3 741.5 747.1 741.0
43 500 5000 506 531 4982 4976 4981 4976 4975.0 4969.0 4975.0 4969.0
44 500 5000 506 633 4880 4875 4879 4874 4873.0 4867.0 4873.0 4867.0
45 500 5000 506 759 4754 4749 4753 4748 4747.1 4741.1 4747.1 4741.0
*In these cases overflow is so infrequent that the client need not outsource.

Table 1: Required Outsourcer Staffing and Offered Load for 45 Numerical Examples
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Table 1 summarizes the experiments and results. Columns 2 though 5 describe input parameters:

RH , RL, mH , and mI . Columns 6 though 9 show the minimum number of CSRs required by each

of the routing schemes – dedicated-overflow (D-O), pooled-overflow (P-O), inverted-V (V), as well

as the lower bound on the N-network (N) – so that the system meets the type-L call service-level

constraint. Columns 10 through 13 display the type-L work-loads (in numbers of CSRs) handled by

the outsourcer under each of the schemes.

The table’s results reveal a number of interesting phenomena. To facilitate our discussion, we

also present graphical versions of the results in the figures below.

6.2 Results For Examples with Smaller Outsourcing Operations

Figure 4 shows the results for examples with smaller outsourcing operations, requiring at most 250

CSRs. In both panels, the horizontal axis plots the performance measure under the N-network

scheme, and the vertical axis displays the difference between the other three schemes and the N-

network scheme.
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Figure 4: Performance vs. Lower Bound – Examples with Small Outsourcing Operations

The figure shows that, in most cases, the type-L load offered to the outsourcer, as well as the

required number of outsourcer CSRs, falls within 5 or 6 CSRs of the lower bound. For small out-

sourcing operations this scale of excess is large in percentage terms, but as the size of the required

outsourcing operation increases to 150 CSRs and above, this represents a premium of less than 3%.

The figure also shows that, even though in most cases the pooled-overflow scheme tends to

outperform both the dedicated-overflow and inverted-V schemes, there are cases in which the pooled

overflow system is outperformed by other two schemes.

In the small cases, in which the lower bound on the required number of CSRs is no more than 25,

when the pooled-overflow scheme is outperformed, it is usually outperformed along both performance

dimensions. In these cases, it appears that type-H arrivals unnecessarily “crowd out” type-L service

in the pooled in-house systems, and it is better to protect type-L capacity by eliminating, rather

than promoting, the pooling of type-L and type-H service.

The superior performance of the dedicated-overflow scheme, in terms of outsourcer load, also
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provides numerical evidence that type-H priority policies are not optimal with respect to minimizing

outsourcer load for small λL. They only become optimal (asymptotically) as λL grows large.

In contrast, in the medium-sized examples, in which the lower bound on the required outsourcer

CSRs falls between 25 and 125, the pooled-overflow system performs well on measures of offered

load, but not on required CSRs. That is, the pooled-overflow system sends fewer low-value calls to

the outsourcer, yet requires more outsourcer CSRs to meet the type-L service-level constraint. This

suggests that, in these cases, it is the burstiness of the stream of overflows from pooled-overflow

system that drives up the required number of outsourcer CSRs. We will further investigate this

phenomenon in Section 6.4.

6.3 Results For Examples with Larger Outsourcing Operations

Figure 5 shows the results for examples with larger outsourcing operations, requiring at least 250

CSRs. Its two panels are analogues of those in the previous figure.
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Figure 5: Performance vs. Lower Bound – Examples with Large Outsourcing Operations

The figure shows that, in these examples, the pooled-overflow scheme performs consistently well

in terms of both overflow rate and required outsourcer CSRs. In all of the figure’s examples, the

type-L load served by the outsourcer is nearly tight on the lower bound. This is consistent with the

results of Proposition 2 and the numerical results of Section 4.2. In cases which require 750 or more

outsourcer CSRs (examples 40 through 46), the number of CSRs required for the pooled-overflow

scheme is also consistently within one or two of the N network’s lower bound. This is excellent on a

percentage basis: within 1% of the lower bound for very large systems.

Furthermore, there is also reason to believe that, in these examples, the actual number of out-

sourcer CSRs required for the N network may not be tight on the lower bound. More specifically,

recall that the lower bound for the N network assumes that outsourcer CSRs also handle type-H

calls, and note that, in examples 40–46, the type-H load is quite large, with RH = 500. It may be

the case that, given an inability to pool the examples’ high volumes of type-H calls across a large

number of outsourcer CSRs, the number of outsourcer CSRs required to for the N network might

slip one or two from the lower bound.
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Similarly, the consistently weaker results for the dedicated-overflow and inverted-V systems sug-

gests that lack of in-house pooling of type-H and type-L service limits the effectiveness of the schemes

in large systems.

6.4 Performance-Drivers for the Pooled-Overflow Scheme

In our 45 numerical examples, the performance of the pooled-overflow system varied with the overall

level of capacity required at the outsourcer. In some small systems, it performed better than the

alternatives, but in others it performed significantly worse. For medium sized systems, it consistently

performed better in terms of outsourcer load, but in some of these examples, it nevertheless required

more outsourcer CSRs. Finally for large systems it consistently performed best in both dimensions.

We hypothesize that it is the burstiness of the stream of overflows from pooled-overflow system

that drives up the CSR requirement in the medium-sized examples. Here, we further investigate the

phenomenon by considering two manifestations of bursty behavior: large variations among individual

inter-overflow times, and serial correlation among successive inter-overflow times.

More precisely, consider the sequence of inter-overflow times of type-L calls to the outsourcer,

{Ti| i = 1, 2, . . .}. Given a stationary (version of such a) sequence of Tis, we consider the coefficient

of variation (CV) as well as the 1-step correlation coefficient (CC) between adjacent inter-overflow

times Ti and Ti+1, which is defined as cov(Ti, Ti+1)/σ2
T .

If the overflow process were Poisson then, by definition, the CV would be one and the CC would

be zero. But overflow processes are typically not Poisson, and they can have CVs greater than one,

as well as non-zero CCs.

The fact that overflow only occurs in one state, when all servers are busy, facilitates the analysis

of the Erlang-B/dedicated-overflow scheme. In contrast, the analysis of the pooled-overflow system

is much more complex, since overflows depend on the particular routing policy and can occur in

many states.

Nevertheless, with some effort we can use difference equations to develop closed-form character-

izations of both of the desired statistics. Analysis and results for the CV of the inter-overflow time

can be found in Appendix D, and its (non-closed form) generalization, to systems in which µH may

or may not equal µL, can be found in Appendix F.2. Analysis for the 1-step serial correlation appears

in Appendix E. These last results also include (a non-closed form) generalization to the k-step serial

correlation.

For each of our 45 numerical examples, we calculate the CV and the CC of the (stationary) inter-

overflow time in the pooled-overflow system. Figure 6 plots the two statistics against the percentage

of type-L calls that are handled by the outsourcer.

The figure’s first panel shows that the CV of the inter-overflow time can be quite large – in

several examples more than 3 – and is negatively associated with the fraction of calls overflowing to
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Figure 6: Extra CV and CC of the Inter-Overflow Time vs. Percent of Type-L Calls Overflowing

the outsourcer. When 100% of type-L calls overflow, the arrival process to the outsourcer is Poisson

with CV = 1, and as the fraction of overflowing calls decreases (i.e. overflow becomes more sporadic),

the CV appears to systematically increase. Examples with very small percentage overflows, however,

show wide variation among CVs.

The second panel shows the contrasting behavior of the 1-step CC. In Erlang-B systems (e.g.

dedicated-overflow schemes), overflow occurs in only one state of the underlying Markov chain –

when all servers are busy – and this implies that inter-overflow times are independent (CC=0). (See

Wolff [52] and Fischer and Meier-Hellstern [19].) In the pooled-overflow scheme, however, calls can

overflow in (infinitely) many states, and there can be serial correlation. But the results here suggest

that the correlation is quite weak.

In addition, the relationship between correlation and percent overflow has an inverted-U shape.

When almost all type-L calls overflow, the arrival to the outsourcer is close to Poisson and the CC

is close to zero. Conversely, when very few calls overflow, the underlying Markov chain at the in-

house call center is likely to have experienced many transitions between consecutive overflows, so the

correlation between inter-overflow times again becomes very weak.

Thus, differences among the examples’ CVs appear to be more significant that those among CCs.

An important complementary question is whether the differences among CVs or CCs appear to have

a stronger effect on outsourcer staffing levels in the pooled overflow scheme. To address this second

question, we compare the required outsourcer staffing levels in the pooled overflow scheme, with

those with an outsourcer whose overflow process is an interrupted Poisson process (IPP).

More specifically, an IPP is an MMPP in which the modulating CTMC has only two states,

an “on” state, during which arrivals are Poisson (at rate λL in our system), and an “off” state,

during which there are no arrivals. We can use IPP arrivals to model inter-overflow times whose

first-two moments match those of the pooled-overflow system and, at the same time, have zero CC.

(See Fischer and Meier-Hellstern [19] and Kukzura [33].) In turn, we can use a spectral-expansion

approach, similar to that described in Chakka and Harrison [13], to determine the performance of an

IPP/M/m/∞ analogue of the pooled-overflow system’s outsourcer and then search for the smallest
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m that satisfies the required service-level constraint.

The result is an outsourcer staffing number which depends only on the CV of the inter-overflow

time, and not the CC, a number that is directly comparable to the required number of outsourcers in

the pooled-overflow system. Let mP−O
O be required number of outsourcer CSRs in the pooled-overflow

scheme, and let mIPP
O be the IPP analogue.

Figure 7 plots
[
mP−O

O −mIPP
O

]
against the pooled-overflow system’s inter-overflow time CC for

41 of this section’s 45 examples. (Cases 17, 18, 31, and 32, which required no outsourcing, were

excluded.) The figure shows two important relationships.
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Figure 7: mP−O
O −mIPP

O versus CC in the Pooled-Overflow System

First, the IPP-derived staffing numbers are extremely close to those required by pooled-overflow

(P-O) system. Recall that required outsourcer staffing numbers range from near-zero to nearly 5,000.

In all but 3 cases, however, the IPP-driven number varies from the actual by as little as ±2.

The strength of the relationship can be quantified using simple linear regression. To account

for large differences among the scales of the examples, we regress log10(m
P−O
O ) on log10(mIPP

O ). As

a benchmark, we note that perfect agreement among the various log10(m
P−O
O )’s and log10(mIPP

O )’s

would yield R2 = 1.00, an estimate of the slope of 1.00 (with p-value of zero), and an estimate of

the intercept of zero. The actual results are not very different from the ideal: R2 > 0.997; and the

estimate for the slope is 1.0225 with a vanishingly small p-value. But the estimate of the intercept

of -0.0566 is significantly different from zero, with p-value 0.0038. Thus, the IPP model displays a

tendency to understaff on examples with smaller numbers of CSRs. (An analogous regression with

absolute, rather than log-log, scaling estimates the slope to be even closer to 1.0 and the intercept

to be not significantly different from zero.)

Second, Figure 7 shows that the CCs of the inter-overflow times do not appear to provide much

additional information regarding required staffing.

It is worth noting that we have performed the same set of analyses using staffing levels recom-
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mended by the more general 2nd-moment asymptotic results of Halfin and Whitt (see Halfin and

Whitt [26], as well as a correction in Whitt [47]), rather than the IPP model. In these tests, we

obtain qualitatively similar regression results.

Thus the IPP model’s ability to track the pooled-overflow model’s required staffing levels appears

to follow from the matching of the CV of the inter-overflow time, rather than the specific “on-off”

nature of the IPP model. More generally, our numerical results indicate that it is the CV, rather

than the serial correlation, of the pooled-overflow system’s inter-overflow times that strongly drives

required staffing levels at the outsourcer.

7 Discussion

In this paper, we have considered four systems for managing the flow of low-value calls between a

service provider and its outsourcer. These schemes vary in their ability to pool the service of low

and high-value calls in house, as well as their capacity to pool the service of low-value calls across

the client and outsourcer.

We demonstrate that a relatively simple routing scheme, such as the pooled overflow system, can

perform nearly optimally in large systems. At the same time, they show that, in smaller systems,

the reservation of adequate type-L capacity is necessary to effectively serve type-L calls, something

that the pooled-overflow system does not do well.

It is important to note, however, that these insights hold only insofar as type-H and type-L

service times and delay standards are similar; the relative performance of these schemes remains an

open question when service statistics differ across customer classes. On the one hand, the additional

flexibility afforded by the N-network system may allow it to significantly outperform the simpler

schemes. On the other, results from Mandelbaum and Reiman [34] and Whitt [46] suggest that,

in these cases, pooling across call types may not provide superior performance, at least in FCFS

systems. Therefore, it may be the case that an inverted-V system, which partitions service classes

but pools type-L capacity across organizations, performs well for systems with µH 6= µL.

In addition to performance, it is also worth considering the schemes’ relative ease of implementa-

tion under more general conditions. When µH 6= µL or the calls’ delay standards differ, few changes

are required to implement the dedicated-overflow or inverted-V systems, since they segregate the ser-

vice of type-H and type-L calls. For the pooled-overflow system, however, both the optimal routing

policy and the characteristics of the overflow process become more difficult to evaluate. Nevertheless,

as Appendix F shows, critical results for the pooled-overflow system do extend to these cases as well.

Alternatively, in some systems, type-L service times may vary between in-house CSRs and the

outsourcer CSRs. For example, training or infrastructure difference may drive the two operations’

service times to differ. In these cases, the dedicated-overflow and pooled-overflow schemes are still

relatively straightforward to implement, since the analysis of the in-house system remains unchanged.
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Here, however, the inverted-V system becomes more difficult to evaluate, since the pool of type-L

CSRs now has two different service rates, one for in-house CSRs and the other for the outsourcer

CSRs’. (For example, see Armony [3].)

In contrast, in all of these settings (as in the original case of uniform service standards) neither

optimal controls and nor performance characterizations are yet available for the N-network. Indeed,

performance analysis of the N-network remains an open problem.

In addition to class-specific behavior and standards, there exist other potentially significant fac-

tors that warrant additional investigation. Three which bear mentioning here are arrival rate uncer-

tainty, customer abandonment behavior, and the potential for the outsourcer to pool capacity across

clients.

First, we note that call-center staffing decisions are typically made using uncertain forecasts of

arrival rates (Brown et al. [11] and Avramidis et al. [7]). If arrival-rate uncertainty is large enough,

then supply-demand (CSR-staffing versus arrival-rate) mismatches can occur that dwarf lower-level

queueing effects. In fact, even when arrival rates are known in advance, constraints on CSR schedules

can cause similar gross capacity imbalances. In cases of significant arrival-rate uncertainty, the fluid-

model approach used in recent papers may be effective in solving a combined staffing and routing

problem. (See Harrison and Zeevi [27], Whitt[48], and Bassamboo et al. [8].) At the same time, to

the extent that arrival rates become known (after staffing but) before routing decisions are made,

then the queueing and quality-of-service issues addressed in this paper may remain of interest.

A second important phenomenon is that impatience can lead customers to abandon queue before

being served (Zohar et al. [54] and Brown et al. [11]). In particular, customer abandonment tends to

quickly stabilize overloaded systems, fundamentally changing waiting-time behavior and statistics.

In these cases, models for the dedicated-overflow and inverted-V schemes, which partition type-H

and type-L customers, can be straightforwardly extended to account for abandonment behavior.

(See Garnet et al. [23] and Zeltyn and Mandelbaum [53].) Significant work is required, however, to

incorporate abandonment behavior into the analysis of the pooled-overflow and N-network systems.

Finally, we note that it may be possible for an outsourcer to serve arrival streams of many clients

with a single pool of CSRs. The benefit of real-time pooling in this manner is two-fold: in addition

to exploiting “square-root” laws of economies of scale, the pooling of uncorrelated streams of arrivals

can potentially smooth out individual overflow processes that may be bursty, reducing the aggregate

stream’s inter-overflow time CV. Pooling across clients may also allow for smoothing of arrival rates

over time. That is, if two clients’ overflow rates are projected to vary over the course of a day,

but with different patterns, then the combined rates may be smoother and allow for more efficient

scheduling of CSRs. For a scheme like this to work, however, the outsourcer’s CSRs must be (able

to be) cross-trained to handle many different clients’ calls, and its information systems must be

robust and secure enough to integrate many clients’ databases on each CSR’s desktop. There may

also be special difficulty in implementing this pooling on a call-by-call basis, as the mental “set-up”
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associated with switching among clients’ calls may be too costly.
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Appendix

There are six appendices. Appendix A gives the transition diagram of a small example of the

inverted-V system described in Section 3.2. Appendix B includes analysis related to Section 4 and

Appendix C analysis related to Section 5. Appendices D and E cover the analysis of the coefficient of

variation and correlation coefficient of the inter-overflow time in the pooled overflow system. These

results are used in Section 6. Finally, Appendix F generalizes the results of Appendices B and D for

systems in which µH may be different from µL.

A Transition Diagram of a Small Inverted-V System in Section 3.2

Figure 8 shows the transition diagram for a small inverted-V system, with mL = 1 and mO = 2

CSRs, in which calls are preferentially routed to the client’s in-house CSR.
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Figure 8: Transition Diagram for Inverted-V with mL = 1 and mO = 2 CSRs

B Analysis of Pooled-Overflow Systems in Section 4

B.1 Optimality of Randomized Threshold-Reservation Policies in Section 4.1

We defer to Appendix F.1 the proof that, among type-H priority policies, there exist stationary,

type-H work-conserving policies that maximize the processing throughput of type-L calls in house.

(Appendix F covers the general case in which µH may be different from µL, of which µH = µL –

studied here – is a special case.) Here, we make use of Appendix F.1’s general result, and we con-

sider only stationary, type-H work-conserving, type-H priority policies. We then prove Theorem 1’s

result: among these policies, there exist so-called “randomized threshold reservation” policies that

are optimal.

Before we begin, we note that, in Section 4.1, we use Little’s Law to state the service-level

constraint in the pooled-overflow system in terms of the average number of calls in queue, rather

than average delay in queue. In fact, the NLP formulation (3)–(6) can actually accommodate a more

general class of occupancy-based constraint. In particular, in the service-level constraint (5), the

delay-cost function associated with queue-length q, d(q), need only satisfy the following assumptions:
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i) d(0) = 0 and d(q̄) is nondecreasing in q̄; ii) supq̄ d(q̄) > D∗; and iii) d̃(α) def=
∑∞

q̄=0 αq̄ d(q̄) < ∞
for all α ∈ (0, 1). For more on these conditions, please see the statement of Assumption 1 in

Appendix F.1.

We now proceed to prove Theorem 1. We begin by noting that, in principal, we could use

substitution to eliminate ξmI and constraint (4), which defines it, from the NLP formulation (3)–(6).

We choose to keep it because the extra variable facilitates our analysis of the problem.

In particular, the inclusion of ξmI in the service-level constraint (5) highlights the fact that, for

fixed ρ, it is the value of ξmI that uniquely determines the constraint’s left-hand-side. The following

lemma shows that there may be many sets of pss from which a given ξmI may be obtained:

Lemma 1

Suppose there is a p ∈ [0, 1]mI for which 0 < pi, pi+1 < 1 and 0 ≤ i ≤ mI − 2. Then there also exists

a p′ ∈ [0, 1]mI 6= p for which p′j = pj for all j 6∈ {i, i + 1} and ξmI (p
′) = ξmI (p). Furthermore, either

p′i > pi and p′i+1 < pi+1 or p′i < pi and p′i+1 > pi+1.

Proof

Let hi = (i+1)µ
λH+λLpi

and lj,k =
∏k

i=j hi. Whenever the range is empty, we define the product to be 1

and the summation to be 0. Then (4) can be written as

ξmI =

[
mI−1∑
s=0

ls,mI−1 +
1

1− ρ

]−1

,

Note that if X
def=
∑mI−1

s=0 ls,mI−1 remains constant, so will ξmI . Substituting, in turn, for hi, we have

X =
i∑

s=0

ls,i−1hihi+1li+2,mI−1 + hi+1li+2,mI−1 +
mI−1∑
s=i+2

ls,mI−1 .

Solving for hi+1 yields

hi+1 =
X −

∑mI−1
s=i+2 ls,mI−1

hi
∑i

s=0 ls,i−1li+2,mI−1 + li+2,mI−1

.

For a given X, we can implicitly differentiate hi+1 with respect to hi to yield

∂ hi+1

∂ hi
= −

(
X −

∑mI−1
s=i+2 ls,mI−1

) (∑i
s=0 ls,i−1li+2,mI−1

)
(
hi
∑i

s=0 ls,i−1li+2,mI−1 + li+2,mI−1

)2 ≤ 0 .

Thus, as we increase (decrease) hi by an infinitesimal amount, it is always possible for us to simul-

taneously decrease (increases) hi+1 to maintain a constant X.

Since both ∂hi/∂pi < 0 and ∂hi+1/∂pi+1 < 0 we conclude that, equivalently, for a given 0 <

pi, pi+1 < 1 and X, a decrease (increase) in pi can be compensated for with a simultaneous increase

(decrease) in pi+1. 2
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Therefore, given a set of routing probabilities p, with elements pi and pi+1 that are interior, we can

construct an alternative set p′, with different p′i and p′i+1, that obtains the same ξmI . Furthermore,

p′i and p′i+1 move away from pi and pi+1 in opposite directions.

Now suppose two solutions, p and p′, yield the same ξmI . Which has the higher objective function

value? To answer the question, we again consider two solutions, p and p′, as defined in Lemma 1.

Lemma 2

Suppose there are p and p′ defined as in Lemma 1. If p′i > pi, or equivalently p′i+1 < pi+1, then

system idleness (3) under p′ is strictly less then that under p .

Proof

Again, let hi = (i+1)µ
λH+λLpi

and lj,k =
∏k

i=j hi. Whenever the range is empty, we define the product to

be 1 and the summation to be 0.

In the proof of Lemma 1, we showed that a decrease in hi could be compensated by a simultaneous

increase in hi+1 to maintain a constant X =
∑mI−1

s=0 ls,mI−1.

Now consider such a change and its effect on each of the terms ls,mI−1 within the summation. In

particular, note

i)
∑mI−1

s=i+2 ls,mI−1 =
∑mI−1

s=i+2

∏mI−1
j=s hj does not change.

ii) From (i), we see that
∑i+1

s=0 ls,mI−1 remains constant, since X−
∑mI−1

s=i+2 ls,mI−1 does not change.

iii) The single term, li+1,mI−1 =
∏mI−1

j=i+1 hj , increases.

iv) From (ii) and (iii) we see that

• li+1,mI−1 increases and
∑i+1

s=0 ls,mI−1 remains constant =⇒
∑i

s=0 ls,mI−1 decreases;

• l0,mI−1, . . . , li,mI−1 all move in the same direction (as hihi+1) =⇒ l0,mI−1, . . . , li,mI−1 all

decrease.

Similarly, consider the change in the objective function. Recall that ξmI remains constant. Using

the definition of lj,k and grouping terms, as above, we see that (3) can be rewritten as

ξmI

[
i∑

s=0

(mI − s) ls,mI−1 + (mI − (i + 1)) li+1,mI−1 +
mI−1∑
s=i+2

(mI − s) ls,mI−1

]
.

Furthermore, noting that mI − s > mI − (i + 1) for s < i + 1 we can rearrange terms to restate (3)

as

ξmI

[
i∑

s=0

((i + 1)− s) ls,mI−1 +
i+1∑
s=0

(mI − (i + 1)) ls,mI−1 +
mI−1∑
s=i+2

(mI − s) ls,mI−1

]
.

Because the first term strictly decreases, and the second and third terms do not change, an appro-

priate, simultaneous increase in pi and decrease in pi+1 strictly decreases system idleness. The same

argument can be used to show that an opposite change strictly increases (3). 2
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Thus, by appropriately increasing the probability of putting a type-L call into service in state i

and decreasing the probability of putting a type-L call into service in state i + 1, the in-house pool

can maintain the same type-H service level and strictly improve its type-L throughput.

Together, Lemmas 1 and 2 show that, whenever there exists a feasible p with pi < 1 and pi+1 > 0,

we can improve the NLP’s objective function by simultaneously increasing pi and decreasing pi+1

until one of them hits a boundary (either pi = 1 or pi+1 = 0). In turn, this allows us to demonstrate

that a randomized threshold reservation policy is optimal:

Proof of Theorem 1

Note that a stationary, type-H priority, type-H work-conserving policy is an (L, pL) policy if and

only if pi = 0 =⇒ pj = 0 for all j > i and pi = 1 =⇒ pj = 1 for all j < i.

Then we consider each of two contradictory cases. First, suppose that there exists an optimal

policy for which pi = 0 and pj > 0 for some j > i. Then there exists a k such that pk = 0 and

pk+1 > 0, and we can simultaneously maintain the feasibility of the service-level constraint (5) and

decrease the objective function value (3) by increasing pk and decreasing pk+1 as in Lemmas 1 and

2. Thus, the original policy could not have been optimal. Similarly, suppose there exists an optimal

policy for which pi = 1 and pj < 1 for some j < i. Then there exists pk−1 < 1 and pk = 1, and the

argument used in the previous case leads to a contradiction here as well. 2

Proof of Proposition 1

As in Lemma 2, define X =
∑mI−1

s=0

∏mI−1
i=s

(i+1)µ
λH+λLpi

. Then differentiation shows that ∂ X
∂ pi

< 0 for all

pi, so ξmI = [X + 1/(1− ρ)]−1 is increasing in each pi.

Now consider two sets of routing probabilities, p, p′ ∈ [0, 1]mI , with p′k > pk and p′i = pi for all

i 6= k, and define ∆i = ξi(p′)− ξi(p). Then we have the following.

i) As demonstrated above, ξmI (p
′) > ξmI (p), or ∆mI > 0. The fact that ξi = ξmI ρ

i−mI for all

i > mI implies that ξi(p′) > ξi(p), or ∆i > 0 for all i ≥ mI .

ii) Together (i) and the fact that
∑∞

i=0 ξ(p′) =
∑∞

i=0 ξ(p) = 1 imply that
∑mI−1

i=0 ξ(p′) <
∑mI−1

i=0 ξ(p),

or
∑mI−1

i=0 ∆i < 0.

iii) Together (i) and the fact that ξi = ξmI

∏mI−1
j=i

(j+1)µ
λH+λLpj

imply that, for all i ∈ {k+1, . . . ,mI−1},
we have ξi(p′) > ξi(p), or ∆i > 0.

iv) Together (ii) and (iii) imply that
∑k

i=0 ξ(p′) <
∑k

i=0 ξ(p), or
∑k

i=0 ∆i < 0.

v) Together (iv) and the fact that ξi = ξk
∏k

j=i
(j+1)µ

λH+λLpj
, or equivalently ξi(p)

ξk(p) = ξi(p
′)

ξk(p′) , imply that,

for all i ≤ p, we have ξi(p′) < ξi(p), or ∆i < 0.

Finally, recall that the NLP’s objective (3) is to minimize system idleness,
∑mI−1

i=0 (mI − i)ξi.
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Then we have ξi(p′) = ξi(p) + ∆i, and

mI−1∑
i=0

(mI − i)ξi(p′) =
mI−1∑
i=0

(mI − i)ξi(p) +
k∑

i=0

(mI − i)∆i +
mI−1∑
i=k+1

(mI − i)∆i

≤
mI−1∑
i=0

(mI − i)ξi(p) +
k∑

i=0

(mI − (k + 1))∆i +
mI−1∑
i=k+1

(mI − (k + 1))∆i

since ∆i < 0 for i ≤ k and ∆i > 0 for i > k. But

k∑
i=0

(mI − (k + 1))∆i +
mI−1∑
i=k+1

(mI − (k + 1))∆i =
mI−1∑
i=0

(mI − (k + 1))∆i < 0

since
∑mI−1

i=0 ∆i < 0. Therefore,
∑mI−1

i=0 (mI − i)ξi(p′) <
∑mI−1

i=0 (mI − i)ξi(p), so the objective

function (3) is decreasing in pk. 2

B.2 Efficiency of Type-H Priority Policies

In this section we prove Proposition 2, which states that the expected throughput of the best type-H

priority policy is within λL
λL+λH+mIµ of an upper bound on the globally optimal throughput for the

pooled-overflow system.

Proof of Proposition 2

Part (i).

We use a sample-path argument to prove that the optimal throughput when λL = ∞ is an upper

bound on the globally optimal throughput when λL < ∞. Let system 1 have “λL = ∞” – so that

there is always a type-L call waiting to be served – and let system 2 have λL < ∞. Then a simple

sample-path argument shows that any policy used in system 2 – including the optimal policy – can

be matched exactly in system 1, so that the type-L throughput and type-H delay performance of the

two systems are identical. Since this policy is feasible, though not necessarily optimal, for system 1,

optimal type-L throughput in system 1 must be at least as large as that in system 2.

The sample-paths of the two systems are constructed to have the same type-H inter-arrival times

and the same service times, once calls are put into service. The only difference between the two

systems is that, rather than having explicit type-L inter-arrival times, system 1 always has a type-L

call waiting to be served.

The sample-path argument, itself, is then trivial. At every instant that a call of either type

arrives to system 2, there also exists a call of the same type in system 1 that is waiting to be served,

and every call that is put into service in system 2 can be feasibly put into service in system 1. Thus

system 1 can feasibly match the performance of system 2.

Part (ii)

Next, we use a coupling argument to show that, for a fixed λL < ∞, there exists a type-H priority
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policy whose type-L throughput is at least as great as λL
λL+λH+mIµ of the globally optimal throughput

when λL =∞.

Let system 1 have “λL = ∞” – so that there always exists a type-L call waiting to be served –

and let system 2 have λL <∞. We couple the two systems using a single set of i.i.d., exponentially

distributed inter-event times of rate λH + λL + mIµ. Without loss of generality, we assume that the

time scale is set so that λH + λL + mIµ = 1.

The event generator is driven off of system 1 and works as follows. Given inter-event times that

are exponentially distributed with mean 1/(λH +λL +mIµ) = 1, the conditional probability that the

next event is a service completion by CSR i equals µ. If CSR i is busy, then the service is real, and if

it is idle, then the service is a “dummy” completion. Similarly, the conditional probability the event

is a type-H arrival equals λH , and the probability that it is a “dummy” type-L arrival equals λL.

Note that, since system 1 always has a type-L call waiting to be served, the arrival of this additional

call does not change the system state.

System 2 is coupled to system 1 in a straightforward fashion. Type-H arrivals are the same as in

system 1. Type-L arrivals in this system are at the same time as in system 1; in this case they are

real, however. Service completions occur at the same epochs as in system 1. Furthermore, the CSRs

in the two systems are matched and labelled i = 1, . . . ,mI .

Two related points concerning this coupling mechanism are important to observe. First, we need

only consider policies which put calls into service at event epochs, and in this proof we only consider

policies within this broad class. In addition, for system 1 we only consider policies which put type-L

calls into service at event epochs that correspond to type-H arrivals or at service completions, since

these are the event epochs associated with system 1. That is, in system 1 there always exists a type-L

call waiting to be served, type-L “arrivals” are dummy, and there exist optimal policies which ignore

these dummy type-L arrival epochs.

Then given an arbitrary call-routing policy (within the class described above) that is used in

system 1, we construct a policy for system 2 as follows. Whenever system 1 puts a type-H job into

service with CSR i, system 2 does so as well. Whenever system 1 puts a type-L job into service with

CSR i, system 2 waits for the next event: if it is a type-L arrival, then system 2 puts the type-L call

into service with CSR i as well; if it is a service completion by CSR i, then system 2 does nothing;

in all the other cases, system 2 puts a “dummy” type-L job into service with CSR i so that, for

accounting purposes, the occupancies of the two systems remains the same.

One last important element of the coupling mechanism is worth noting here. When system 2 puts

a type-L call into service – either dummy or real – the processing time of the call equals the residual

service time of the type-L call that had previously been put into service in system 1. Because type-L

service times are exponentially distributed with rate µ, however, the conditional distribution of the

residual service-time in system 1 is exponential with rate µ as well. Therefore, by assigning system

1’s residual service times to type-L calls in system 2, we generate a sequence of service times for

6



type-L calls in system 2 that are exponentially distributed with rate µ as well.

Thus, the only times at which the evolutions of the two systems differ are those moments in

which system 1 has put a type-L call into service and system 2 is still waiting for the next event to

occur. At these times, the number of busy servers in system 2 is one less than in system 1; and after

the next event, the two “accounting” occupancies are, again, the same. Most importantly, there are

always at least as many idle servers in system 2 as in system 1.

We claim that system 2 feasibly handles a fraction λL
λH+λL+mIµ of the type-L throughput of system

1. For feasibility, note that system 2 can and does take type-H calls at exactly the same epochs as

system 1. Therefore the length of the type-H queue is always equal in the two systems, and system 2

is feasible whenever system 1 is. For throughput, note that every time system 1 takes a type-L call,

there is a probability of λL
λH+λL+mIµ that the next event will be a type-L arrival and that system 2

will take a real, rather than dummy, type-L job as well. So the type-L throughput of system 2 is
λL

λH+λL+mIµ times that of system 1.

We also note that if system 1 uses a type-H priority policy, then the policy induced in system 2

will be of type-H priority as well. Furthermore, from [21] we know that there exist type-H priority

policies that are optimal in system 1. Thus, there exists a type-H priority policy in system 2 that

achieves λL
λH+λL+mIµ of the type-L throughput obtained using the optimal policy in system 1. 2

Proposition 2 states that, for λL that is “large” with respect to λH , µ, and mI , the performance

of type-H priority policies should be excellent. A natural next question is “how large is ‘large’?”

The results of numerical tests, shown below, indicate that the numbers are quite reasonable.

We set the time scale so that average service times equal µ−1 = 3.33 minutes, and we impose a

service-level constraint that the ASA of type-H calls must be 0.5 minutes or less. We then system-

atically vary λH and λL. The three panels of Figure 9 display the results for three sizes of in-house

pools: a small system, driven by λH = 6, or equivalently RH = λH/µ = 20; a medium system, with

λH = 30 and RH = 100; and a larger system, with λH = 150 and RH = 500.

In each panel the horizontal axis shows the number of CSRs used in the pool, as it climbs above

the minimum needed to meet the type-H service-level constraint. The vertical axis marks the load

of type-L calls that is processed in house. (We plot load, in CSRs, rather than throughput rates,

so that the scales of the two axes are comparable.) Each curve within a panel shows, for a given

RL = λL/µ, the load of type-L calls processed in-house by the optimal type-H priority policy.

Figure 9 shows that, in fact, type-L throughput is nearly optimal for relatively large RL. In each

panel, the curve for RL =∞ represents an upper bound on optimal performance, and the curves for

the finite RL’s systematically approach the upper bound. For small in-house systems, with RH = 20,

the performance when RL = 100 is nearly optimal. This represents a rate of low-value calls that is five

times the rate of the high-value calls. Given the “80–20” maxim, that 20% of the customers provide

80% of the value to a company, this appears to be a quite reasonable balance. Furthermore, as the
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scale of type-H traffic grows, the relative level of type-L traffic required to obtain nearly-optimal

performance systematically declines. With RH = 500, low-value calls need only have RL = 250 –

half the rate of high-value traffic – in order to provide excellent performance. Thus, when µH = µL,

type-H priority policies should have excellent, if not globally optimal, performance for relatively large

systems.

C Performance Bounds for the N-Network System in Section 5

In this appendix we prove Proposition 3’s performance bounds for the N-network system.

Proof of Proposition 3

Part (i)

Step 1. Given an N-network with mI in-house and mO outsourcer CSRs and routing policy π,

consider a pooled system with m = mI + mO CSRs, all capable of handling both types of calls.

Label the first mI of the pool “in-house” and the last mO of them “outsourcer” and use routing

policy π. The performance of the two systems will be exactly the same.

Step 2. Consider the pooled system in which routing policy π is used. Let ASAπ
H and ASAπ

L

be the ASA achieved by policy π in the N-network for type-H and type-L calls respectively. Then

because ASAπ
H ≤ ASA∗ and ASAπ

L ≤ ASA∗,

ASAπ =
λH

λH + λL
ASAπ

H +
λL

λH + λL
ASAπ

L ≤ ASA∗.

From Little’s law, we know that there exists a long-run average number in queue, Lπ, such that

Lπ = (λH + λL)ASAπ.

Step 3. We use a coupling argument to show we can construct a not necessarily work-conserving

first-come-first-served service discipline, π′, that maintains the same number-in-queue process as

there is under π. More specifically, let {T1, T2, . . .} be an i.i.d. sequence of exponentially-distributed

inter-arrival times of mean (λH + λL)−1. Let {p1, p2, . . .} be an i.i.d. sequence of Bernoulli random

variables that equal one – corresponding to a type-H, rather than type-L, arrival – with probability
λH

λH+λL
. Finally, let {S1, S2, . . .} be an i.i.d. sequence of exponentially-distributed service times of

mean µ−1. These service-time realizations are sampled in the order in which calls are put into service,

no matter whether the call is of type-H or type-L.

Then every time π puts a call into service, π′ does as well. Since the inter-arrival-time, call-type,

and service-time samples are the same in the two systems, the number-in-system process is identical

in the two systems. In turn, Lπ = Lπ′ .

Step 4. Define FCFS to be a work-conserving first-come-first-served service discipline. Then

a FCFS policy will have number-in-system process that is no more than that of π′. Therefore,
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LFCFS ≤ Lπ, and by Little’s Law

ASAFCFS =
LFCFS

λH + λL
≤ Lπ

λH + λL
= ASAπ ≤ ASA∗.

Finally, by PASTA, we know that expected delay in queue of every type-H and every type-L call is

ASAFCFS
H = ASAFCFS

L = ASAFCFS ≤ ASA∗.

Thus, if policy π is feasible for a system with mI in house and mO outsourcer CSRs, then a FCFS

policy with m = mI + mO pooled CSRs is feasible as well. This proves part (i).

Part (ii)

The result follows from the fact that the globally optimal type-L throughput when λL = ∞ is also

an upper bound on the throughput achievable in the N-network scheme. The proof is analogous to

that of Proposition 2. 2

D Inter-Overflow Time CV in the Pooled-Overflow System

The analysis in this appendix characterizes the moments of the inter-overflow times of type-L calls

from the client company to the outsourcer in the pooled-overflow scheme. This information is used

to numerically evaluate the coefficient of variation (CV) of the inter-overflow time in the examples

in Section 6.4.

For notational convenience, we drop the subscript, I, from the number of in-house CSRs, mI .

Thus, the total number of in-house CSRs is referred to as “m” below.

When the client company uses the (L, pL) policy to for type-L call admission, the overflow of

type-L calls to the outsourcer follows a Markov Modulated Poisson Process (MMPP): it is Poisson

with rate λL when s > L, Poisson with rate (1 − pL)λL when s = L, and rate 0 when s < L. For

such a policy, p0 = · · · = pL−1 = 1 and pL+1 = · · · = pm−1 = 0.

We now characterize the inter-overflow time. Let T̃ denote the random inter-overflow time, and

let T̃s, ∀ s, denote the random time to next overflow starting in after-action state s. Because the

overall arrival process of type-L calls is Poisson, we can apply PASTA to obtain

P
{

T̃ ≤ t
}

=
∑

s

(
ξs(1− ps)∑
s ξs(1− ps)

)
P
{

T̃s ≤ t
}

, (7)

where ξs can be computed from (2) with p0 = · · · = pL−1 = 1 and pL+1 = · · · = pm−1 = 0.

Because P
{

T̃ ≤ t
}

is a convex combination of P
{

T̃s ≤ t
}

for all s ≥ L, the kth moment of T̃

will be the same convex combination of the kth moment of T̃s. Therefore, it suffices to find all the

moments of T̃s for any s ≥ L.
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Let µs =
{

sµ, ∀s ≤ m

mµ, ∀s > m
be the total service rate in state s and λs = λH + λL be the total

arrival rate in state s. Then ωs = λs + µs is the total rate at which next event takes place in state

s. In particular, ωm = λH + λL + mµ. Denoting by ẽω an exponential random variable with rate ω,

we obtain the following relationship among all T̃ss:

T̃s = ẽωs +


T̃s−1 w.p. µs/ωs

0 w.p. (1− ps)λL/ωs

T̃s+1 w.p. (λH + psλL)/ωs

∀ s ≥ 1. (8)

Let Ts(θ) denote the Laplace transform of T̃s. Then (8) implies

Ts(θ) =
µs

ωs + θ
Ts−1(θ) +

(1− ps)λL

ωs + θ
+

λH + psλL

ωs + θ
Ts+1(θ), ∀s ≥ 1. (9)

For all s ≥ m, ps = 0, µs = mµ, and ωs = ωm. Therefore when s ≥ m, from (9) we obtain

Tm+q(θ) =
mµ

ωm + θ
Tm+q−1(θ) +

λL

ωm + θ
+

λH

ωm + θ
Tm+q+1(θ), ∀q ≥ 1, (10)

where q = s−m and q is the type-H queue length.

The solution to (10) has a geometric form, determined completely by the boundary point, Tm(θ):

Proposition 4

The solution to (10) is:

Tm+q(θ) = Tm(θ)zq
1(θ) +

λL

λL + θ
[1− zq

1(θ)] , (11)

where z1(θ) = (ωm+θ)−
√

(ωm+θ)2−4mµλH

2λH
.

Proof

The proof will follow these three steps:

1. Show that the solution to (10) is of the form of Tm+q(θ) = J1(θ)z1(θ)q + J2(θ)z2(θ)q + λL
λL+θ ,

for some easily calculated J1(θ), J2(θ), z1(θ), z2(θ), where 0 ≤ z1(θ) < 1 < z2(θ).

2. Show that limq→∞ Tm+q(θ) = λL
λL+θ .

3. From the first two steps, we must have J2(θ) = 0 and J1(θ) = Tm(θ)− λL
λL+θ .

Step 1 To simplify notation, we will suppress the θ in all of the Laplace transforms, so that

Tm+q(θ) will become Tm+q, and so on. We define γ1 = mµ
ωm+θ , γ2 = λH

ωm+θ , γ3 = λL
ωm+θ . Then (10)

becomes:

Tm+q = γ1Tm+q−1 + γ3 + γ2Tm+q+1 ∀q ≥ 1. (12)
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Multiplying both sides by zq+1 and summing from 1 to ∞, we obtain

∞∑
q=1

Tm+qz
q+1 = γ1

∞∑
q=1

Tm+q−1z
q+1 + γ3

∞∑
q=1

zq+1 + γ2

∞∑
q=1

Tm+q+1z
q+1. (13)

Denoting f(z) =
∑∞

q=0 Tm+qz
q, we have

z[f(z)− Tm] = γ1z
2f(z) + γ3z

2/(1− z) + γ2[f(z)− Tm − Tm+1z] (14)

=⇒ f(z) =
γ2Tm+1z − Tmz − γ3z

2/(1− z) + γ2Tm

γ1z2 − z + γ2
(15)

=
(1− z)(γ2Tm+1z − Tmz + γ2Tm)− γ3z

2

γ2(1− z1z)(1− z2z)(1− z)
, (16)

where z1 ≤ z2 are the two roots of γ2z
2 − z + γ1 = 0 (because γ2 6= 0):

z1 =
1−
√

1− 4γ1γ2

2γ2
and z2 =

1 +
√

1− 4γ1γ2

2γ2
. (17)

Since z1 + z2 > 0 and z1z2 = γ1/γ2 > 1, we have 0 < z1 < 1 < z2. Carrying out partial-fraction

expansion, we obtain

f(z) =
[

J1

1− z1z
+

J2

1− z2z
+

J3

1− z

]
, (18)

where

J1 = [1− z1z]f(z) |z=1/z1
=

γ2Tm+1 + (γ2z1 − 1)Tm + γ3/(1− z1)
γ2(z1 − z2)

,

J2 = [1− z2z]f(z) |z=1/z2
=

γ2Tm+1 + (γ2z2 − 1)Tm + γ3/(1− z2)
γ2(z2 − z1)

, (19)

and J3 = (1− z)f(z) |z=1=
−γ3

γ1 − 1 + γ2
=

λL

λL + θ
.

Then from (18) we have

Tm+q = J1z
q
1 + J2z

q
2 +

λL

λL + θ
. (20)

Because γ2(z2 − z1) 6= 0, J1 and J2 always exist. Thus (18) and (20) are always valid. And it is

clear that the series Tm+q, as defined in (20), satisfies (12).

Step 2 When an overflow occurs in state s, the probability that the next type-L arrival will also

be overflowed approaches 1 as s → ∞. Therefore, the time until the next overflow approaches an

exponential random variable with rate λL as s→∞. We now formalize this.

Suppose we start in state m + q. Denote by R̃q the random amount of time it takes to reach the

first state, L, in which it is possible to accept a new type-L call. Also, we denote by Ẽ the random

amount of time it takes for the next type-L call to arrive. Clearly Ẽ is exponentially distributed

with rate λL.

It is easy to show (by induction, for example) that R̃q is stochastically larger than the sum of

q + 1 exp(ωm) random variables, one exp(ωm−1) random variable, one exp(ωm−2) random variable,
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. . ., and one exp(ωL+1) random variable. This sum, in turn, is stochastically larger than the sum of

q + m− L exp(ωm) random variables.

So if we denote a Γ(q+m−L, ωm) random variable by X̃q and its p.d.f. by gq(t) = ωme−ωmt(ωmt)q+m−L−1

(q+m−L−1)! ,

we have

P
{

R̃q ≤ Ẽ
}

=
∫ ∞

0
P
{

R̃q < t
}

λLe−λLtdt ≤
∫ ∞

0
P {X < t}λLe−λLtdt

= P
{

X ≤ Ẽ
}

=
∫ ∞

0
P
{

Ẽ ≥ t
}

gq(t)dt =
∫ ∞

0
e−λLtgq(t)dt.

Now ∀ ε > 0,∃ t̄, s.t. e−λL t̄ < ε. Moreover, gq(t) = ωme−ωmt(ωmt)q+m−L−1

(q+m−L−1)! → 0 uniformly on t ∈ [0, t̄]

as q →∞. Hence ∃Qε s.t. gq(t) ≤ ε for all q > Qε and t ∈ [0, t̄], and

∫ ∞

0
e−λLtgq(t)dt =

∫ ∞

t̄
e−λLtgq(t)dt +

∫ t̄

0
e−λLtgq(t)dt

≤ ε

∫ ∞

t̄
gq(t)dt + ε

∫ t̄

0
e−λLtdt ≤ ε

(
1 +

1
λL

)
, ∀ q > Qε.

Therefore, limq→∞P
{

R̃q ≤ Ẽ
}

= 0.

If we denote the c.d.f. of T̃m+q by Fq(t), then

Fq(t) = P
{

T̃m+q ≤ t
}

= P
{

R̃q + T̃L ≤ t
}

P
{

R̃q ≤ Ẽ
}

+ (1− e−λLt)P
{

R̃q > Ẽ
}

.

Therefore,

| Fq(t)− (1− e−λLt) | ≤ P
{

R̃q ≤ Ẽ
}[

(1− e−λLt) +
∣∣∣P{R̃q + T̃x̄L ≤ t

}∣∣∣]
≤ 2P

{
R̃q ≤ Ẽ

}
. (21)

Because (21) holds for all t and limq→∞P
{

R̃q ≤ Ẽ
}

= 0, we have limq→∞ Fq(t) = 1 − e−λLt

uniformly. Moreover,

lim
q→∞

Tm+q(θ) = lim
q→∞

∫ ∞

0
e−stdFq(t)

∗= lim
q→∞

s

∫ ∞

0
e−stFq(t)dt

4
= s

∫ ∞

0
lim

q→∞
e−stFq(t)dt = s

∫ ∞

0
e−st(1− e−λLt)dt =

λL

λL + θ
.

Here, (*) is in Wolff [52, p. 533, eq. (21)]; and (4) follows from the uniform convergence of Fq(t).

Step 3 Because z2(θ) > 1, the convergence of Tm+q(θ) implies that J2(θ) = 0. Consequently,

Tm+q(θ) = J1(θ)z
q
1(θ) + λL

λL+θ . Letting q = 0, we obtain J1(θ) = Tm(θ) − λL
λL+θ . Plugging this and

J2(θ) = 0 into (20), we obtain

Tm+q(θ) =
(

Tm(θ)− λL

λL + θ

)
zq
1(θ) +

λL

λL + θ
= Tm(θ)zq

1(θ) +
λL

λL + θ
[1− zq

1(θ)] . (22)

2
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Proposition 4 solves the (infinitely many) tail equations (9) for s > m. To completely determine

the system, we need (9) for s ≤ m, (11), and one other equation. The following corollary provides

this equation:

Corollary 1

λHTm+1(θ) + [λHz2(θ)− (ωm + θ)]Tm(θ) +
λL

1− z2(θ)
= 0, (23)

where z2(θ) = (ωm+θ)+
√

(ωm+θ)2−4mµλH

2λH
.

Proof

From the proof of Proposition 4 we know that J2(θ) = 0 for all θ. Therefore, from (19), we get

γ2(θ)Tm+1(θ) + (γ2(θ)z2(θ)− 1)Tm(θ) + γ3(θ)/(1− z2(θ))
γ2(θ)(z2(θ)− z1(θ))

= 0,

which simplifies to

λHTm+1(θ) + [λHz2(θ)− (ωm + θ)]Tm(θ) +
λL

1− z2(θ)
= 0.

2

In what follows, we use the fact that the kth derivative of −Ts(θ) evaluated at 0 gives the kth

moment of T̃s to derive expressions for the first two moments of the inter-overflow time, which is

then used to calculate the CV.

We first derive a complete solution of (9). Equation (11) solves (9) for s > m. The remaining

equations in (9), together with (23), are linear, and they can be easily and quickly solved. In

matrix-vector notation, (9) for states s ≤ m, together with (23), can be expressed as:

Q(θ)X(θ) = y(θ), (24)

where X(θ) =
(
T0(θ), . . . , Tm(θ), Tm+1(θ)

)T
, y(θ) =

(
0, . . . , (1−pL)λL

ωL+θ , λL
ωL+1+θ , . . . , λL

ωm+θ ,− λL
λH(1−z2(θ))

)T

and

Q(θ) =



1, − ω0
ω0+θ , . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. − iµ
ωi+θ , 1, −λH+λL

ωi+θ , . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . − Lµ
ωi+θ , 1, −λH+pLλL

ωL+θ , . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . − iµ
ωi+θ , 1, − λH

ωi+θ , . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . − mµ
ωm+θ , 1, − λH

ωm+θ

. . . . . . . . . . . . . . z2(θ)− ωm+θ
λH

, 1


.

Here the superscript T indicates transposition.

To derive the moments of the inter-overflow time, we repeatedly differentiate (24) and set θ = 0:
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Theorem 2

Let 1 ∈ Rm+2 be the vector whose components are all 1. Then the first two moments of the inter-

overflow time are

E(T̃ ) =

∑m−1
s=L ξs(1− ps)E(T̃s) + ξm

[
E(T̃m)− 1

λL

1−z1(0)
λH
mµ

+ 1

λL

�
1−λH

mµ

�
]

∑
s≥L ξs(1− ps)

, (25)

where (
E(T̃0), . . . , E(T̃m+1)

)T
= Q−1(0)

[
Q′(0)1− y′(0)

]
, (26)

and

E(T̃ 2) =
1∑

s≥L ξs(1− ps)

{
m−1∑
s=L

ξs(1− ps)E(T̃ 2
s )

+ξm

 E(T̃ 2
m)− 2

λ2
L

1− z1(0)
(

λH
mµ

) +
2

λ2
L

(
1− λH

mµ

) +
2
(

1
λL
− E(T̃m)

)
z′1(0)

(
λH
mµ

)
(
1− z1(0) λH

mµ

)2


 , (27)

where(
E(T̃ 2

0 ), . . . , E(T̃ 2
m+1)

)T
= Q−1(0)[2Q′(0)Q(0)−1Q′(0)1− 2Q′(0)Q(0)−1y′(0)−Q′′(0)1 + y′′(0)].(28)

Proof

Differentiating (24) once, we obtain Q′(θ)X(θ)|θ=0 + Q(θ)X ′(θ)|θ=0 = y′(θ)|θ=0. Since X(0) = 1,

yields (26). This gives us E(T̃s) for states s ≤ m + 1. For all the other states, we use (11):

E(T̃m+q) = −T ′m+q(0)

= −
[
T ′m(0)zq

1(0) + Tm(0)qzq−1
1 (0)z′1(0)− 1

λL
(1− zq

1(0))− qzq−1
1 (0)z′1(0)

]
=

(
E(T̃m)− 1

λL

)
zq
1(0) +

1
λL

, (29)

where E(T̃m) is already determined in (26). Note that (29) is derived for q ≥ 1, but clearly the result

applies to q = 0 as well.

So the overall first moment of overflow is:

E(T̃ ) =

∑m−1
i=L ξi(1− pi)E(T̃i) +

∑∞
q=0 ξm+qE(T̃m+q)∑

s≥L ξs(1− ps)

=

∑m−1
i=L ξi(1− pi)E(T̃i) + ξm

∑∞
q=0

(
λH
mµ

)q [(
E(T̃m)− 1

λL

)
zq
1(0) + 1

λL

]
∑

s≥L ξs(1− ps)

=

∑m−1
i=L ξi(1− pi)E(T̃i) + ξm

[
E(T̃m)− 1

λL

1−z1(0)
λH
mµ

+ 1

λL

�
1−λH

mµ

�
]

∑
s≥L ξs(1− ps)

. (30)
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Thus we have shown (25).

Now for the second moments. For states s ≤ m + 1 we will differentiate (24) twice and set θ = 0:

y′′(0) = Q′′(0)1 + 2Q′(0)X ′(0) + Q(0)X ′′(0) and(
E(T̃ 2

0 ), . . . , E(T̃ 2
m+1)

)T

= X ′′(0) = Q−1(0)[−2Q′(0)X ′(0)−Q′′(0)1 + y′′(0)]

= Q−1(0)[2Q′(0)Q(0)−1
(
Q′(0)1− y′(0)

)
−Q′′(0)1 + y′′(0)]

= Q−1(0)[2Q′(0)Q(0)−1Q′(0)1− 2Q′(0)Q(0)−1y′(0)−Q′′(0)1 + y′′(0)].

This proves (28). The second moments of T̃ corresponding to other states can be calculated

similarly to (29). For q ≥ 2:

E(T̃ 2
m+q) = T ′′m+q(0)

= T ′′m(0)zq
1(0) + 2T ′m(0)qzq−1

1 (0)z′1(0) + Tm(0)q(q − 1)zq−2
1 (0)[z′1(0)]2 + Tm(0)qzq−1

1 (0)z′′1 (0)

+
2
λ2

L

(1− zq
1(0))− 2

λL

[
−qzq−1

1 (0)z′1(0)
]
− [q(q − 1)zq−2

1 (0)[z′1(0)]2 + qzq−1
1 (0)z′′1 (0)]

= T ′′m(0)zq
1(0) + 2T ′m(0)qzq−1

1 (0)z′1(0) +
2
λ2

L

(1− zq
1(0))− 2

λL

[
−qzq−1

1 (0)z′1(0)
]

= E(T̃ 2
m)zq

1(0)− 2qE(T̃m)zq−1
1 (0)z′1(0) +

2
λ2

L

(1− zq
1(0)) +

2
λL

qzq−1
1 (0)z′1(0), (31)

where E(T̃m) and E(T̃ 2
m) are determined in (26) and (28) respectively.

Note that even though (31) is derived for q ≥ 2, it applies to q = 0, 1 as well: for q = 0, it is

trivial; for q = 1 we have

E(T̃ 2
m+1) = T ′′m+1(0)

= T ′′m(0)z1(0) + 2T ′m(0)z′1(0) +
2
λ2

L

(1− z1(0)) +
2
λL

z′1(0)

= E(T̃ 2
m)z1(0)− 2E(T̃m)z′1(0) +

2
λ2

L

(1− z1(0)) +
2
λL

z′1(0). (32)

Thus, the overall second moment of overflow is:

E(T̃ 2) =
1∑

s≥L ξs(1− ps)

{
m−1∑
s=L

ξs(1− ps)E(T̃ 2
s )

+ξm

∞∑
q=0

(
λH

mµ

)q [
E(T̃ 2

m)zq
1(0)− 2qE(T̃m)zq−1

1 (0)z′1(0) +
2
λ2

L

(1− zq
1(0)) +

2
λL

qzq−1
1 (0)z′1(0)

]
=

1∑
s≥L ξs(1− ps)

{
m−1∑
s=L

ξs(1− ps)E(T̃ 2
s )

+ξm

 E(T̃ 2
m)− 2

λ2
L

1− z1(0)
(

λH
mµ

) +
2

λ2
L

(
1− λH

mµ

) +
2
(

1
λL
− E(T̃m)

)
z′1(0)

(
λH
mµ

)
(
1− z1(0) λH

mµ

)2


 .
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Thus we have shown (27). 2

The first two moments of the inter-overflow time, (25) and (27), allow us to easily calculate

the CV of the inter-overflow time, CV =
√

E(T̃ 2)− E2(T̃ ) / E(T̃ ). We use this approach for the

numerical analysis in Section 6.4.

E Inter-Overflow-Time CC in the Pooled-Overflow System

The analysis in this appendix characterizes the serial correlation between successive inter-overflow

times of type-L calls from the client company to the outsourcer in the pooled-overflow scheme. This

information is used to numerically evaluate the correlation coefficient (CC) of the inter-overflow time

in the examples in Section 6.4

For notational convenience, we drop the subscript, I, from the number of in-house CSRs, mI .

Thus, the total number of in-house CSRs is referred to as “m” below.

E.1 1-step correlation

The 1-step serial correlation of the inter-overflow time is defined as

CC =
E(T̃iT̃i+1)− E(T̃i)E(T̃i+1)

σT̃i
σT̃i+1

, (33)

where T̃i and T̃i+1 are two consecutive inter-overflow times.

Given a stationary system, E(T̃i) = E(T̃i+1) = E(T̃ ) and σT̃i
= σT̃i+1

=
√

E(T̃ 2)− E2(T̃ ), where

E(T̃ ) and E(T̃ 2) are given in (25) and (27). So it remains to derive E(T̃iT̃i+1).

Some additional notation is introduced in Table 2.

Fij(t): the probability that starting in state i the next overflow will occur in state j

and it will take no more than t for that to occur
fij(t): = F ′ij(t)
fi(t): the PDF of the time to next overflow if the current state is i

F k
ij(t): the probability that starting in state i the subsequent k-th overflow will occur

in state j and it will take no more than t for that to occur
fk

ij(t): the corresponding PDF
Ei: the expected time to next overflow if the current state is i, shorthand for E(T̃i)

Table 2: Notation

When an (L, pL) policy is used, an overflow can only occur in states L and above. Let π be the

steady-state distribution of the beginning state of an overflow. Recall that p0 = · · · = pL−1 = 1 and
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pL+1 = · · · = pm−1 = 0. Thus, πi = (1−pi)ξiP
j(1−pj)ξj

,∀i, and

E(T̃iT̃i+1) =
∫ ∞

0

∫ ∞

0
xy

∑
i,j

πifij(x)fj(y)

 dxdy =
∑
i,j

πiEj

∫ ∞

0
xfij(x)dx

= −
∑
i,j

πiEj f̂
′
ij(s)|s=0 = − (π0, π1, . . . ) · f̂ ′(0) ·

 E0

E1

. . .

 , (34)

where Ej is the shorthand for E(T̃j), and f̂(s) is the matrix containing f̂ij(s), the Laplace transform

of fij(x) for all i, j. So it remains for us to solve for the matrix f̂ ′(0) = {f̂ ′ij(s)|s=0}i,j .

1) For j 6= i,

Fij(t) = Pr(starting in i, it takes no more than t for the next overflow to occur in j)

= lim
δt→0

{
Pr(0 event in δt)Fij(t− δt) + Pr(one event)

[
µi

ωi
Fi−1,j(t− δt) +

(1− pi)λL

ωi
0

+
λH + piλL

ωi
Fi+1,j(t− δt)

]
+ o(δt)

}
= lim

δt→0

{
e−ωiδtFij(t− δt) + e−ωiδtδt [µiFi−1,j(t− δt) + (λH + piλL)Fi+1,j(t− δt)] + o(δt)

}
.

In turn,

lim
δt→0

Fij(t)− Fij(t− δt)
δt

= lim
δt→0

{
e−ωiδt − 1

δt
Fij(t− δt) + e−ωiδt [µiFi−1,j(t− δt) + (λH + piλL)Fi+1,j(t− δt)]

}
fij(t) = −ωiFij(t) + µiFi−1,j(t) + (λH + piλL)Fi+1,j(t). (35)

2) For j = i,

Fii(t) = Pr(starting in i, it takes no more than t for the next overflow to occur in i)

= lim
δt→0

{
Pr(0 event)Fii(t− δt) + Pr(one event)

[
(1− pi)λL

ωi
1 +

µi

ωi
Fi−1,i(t− δt)

+
λH + piλL

ωi
Fi+1,i(t− δt)

]
+ o(δt)

}
= lim

δt→0

{
e−ωiδtFii(t− δt) + e−ωiδtδt [(1− pi)λL + µiFi−1,i(t− δt) + (λH + piλL)Fi+1,i(t− δt)] + o(δt)

}
.

In turn,

lim
δt→0

Fii(t)− Fii(t− δt)
δt

= lim
δt→0

{
e−ωiδt − 1

δt
Fii(t− δt) + e−γiδt [(1− pi)λL + µiFi−1,i(t− δt)

+(λH + piλL)Fi+1,i(t− δt)]}

fii(t) = −ωiFii(t) + (1− pi)λL + µiFi−1,i(t) + (λH + piλL)Fi+1,i(t).

So, if we let

Γ =


0 0 0 . . . . . .

. . . . . . . . . . . . . . .

. . . 0 (1− pL)λL 0 . . .

. . . . . . 0 λL 0

. . . . . . . . . . . . . . .

← row corresponding to state L,
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A =



−ω0 λH + λL

. . .

µi −ωi λH + λL

. . .

µL −ωL λH + pLµL

. . . λH

µm −ωm λH

µm+1 −ωm+1 λH

µm+2 . . .


, and F =

 F00 F01 . . .

F10 F11 . . .

. . . . . . . . .

 ,

then

F ′ = Γ + AF.1 (36)

Since f̂(s) = sF̂ (s), we have:

f̂(s) =
Γ
s

+
A

s
f̂(s) ⇒ (sI −A)f̂(s) = Γ. (37)

Differentiating this we obtain f̂(s)+ (sI −A)f̂ ′(s) = 0, and f̂(s)|s=0 = Af̂ ′(s)|s=0. From (37) we

know that f̂(s)|s=0 = −A−1Γ. Thus f̂ ′(s)|s=0 = −A−2Γ.

So (34) becomes:

E(T̃iT̃i+1) = (π0, π1, . . . , πi, . . . ) ·A−2 · Γ ·

 E0

E1

. . .

 .

= (π0, π1, . . . , πi, . . . ) ·A−2 ·



0
. . .

(1− pL)λLEL

λLEL+1

. . .

λLEj

. . .


.

Clearly it would be hard to invert the infinite matrix A. So we will let U and V be such that

U ·A = (π0, π1, . . . , πi, . . . ) , (38)

A · V =



0
. . .

(1− pL)λLEL

λLEL+1

. . .

λLEj

. . .


, (39)

and derive U and V directly. E(T̃iT̃i+1) = U · V follows.
1The solution of (36) is straightforward: F (t) =

�
eAt − I

�
A−1Γ and f(t) = eAtΓ. This is consistent with equation

(5) in Fischer and Meier-Hellstern [19]. The matrices are related as follows: Γ = Λ, A = Q− Λ. However, the Laplace

transform approach we adopt here can be extended to calculate any k-lag correlation.
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Our approach is to solve the tails of U and V . The rest of the probabilities can be obtained by

inverting a finite portion of A.

Vector V : We know from (39) that, for states i ≥ m,

mµvm+q − (mµ + λH + λL)vm+q+1 + λHvm+q+2 = λLEm+q+1.

Let fv(s) =
∑∞

q=0 vm+qs
q, then

fv(s) =
gv(s)s2 − (mµ + λH + λL)vms + λH [vm + vm+1s]

mµs2 − (mµ + λH + λL)s + λH
, (40)

where due to (29),

gv(s) =
∞∑

q=0

λLEm+q+1s
q =

λLEm − 1
1/z1(0)− s

+
1

1− s
. (41)

Let s1 and s2 be the two roots of the denominator of (40):

s1 =
(mµ + λH + λL) +

√
(mµ + λH + λL)2 − 4mµλH

2mµ
> 1 (42)

s2 =
(mµ + λH + λL)−

√
(mµ + λH + λL)2 − 4mµλH

2mµ
< 1. (43)

It’s important to note that s1 = 1/z1(0), where z1(0) is previously defined in Proposition 4 and

equation (17). Then (40) and (41) combine to yield:

fv(s) =
av

s− s1
+

bv

s− s2
+

cv

s− 1
+

dv

(s− s1)2
, (44)

where av, bv, cv, and dv are constants that can be determined as

av =
dfv(s) (s− s1)

2

ds
|s=s1 , bv = fv(s) (s− s2) |s=s2 , cv = fv(s) (s− 1) |s=1, dv = fv(s) (s− s1)

2 |s=s1 .(45)

Expanding (44), we obtain the tail of v:

vm+q = −avs
−1−q
1 − bvs

−1−q
2 − cv + dv(q + 1)s−2−q

1 . (46)

We note that because 0 < s2 < 1, we must have bv = 0, which yields

[(mµ + λH + λL)s2 − λH ] vm − λHs2 vm+1 =
(

λLEm − 1
s1 − s2

+
1

1− s2

)
s2
2. (47)

(46) solves the tail for V using the equations i > m in (39). The rest of the equations in (39),

along with (47), give us the rest of the vector V :

v0

. . .

vi

. . .

vm

vm+1

 =



−ω0 λ̄

. . .

µi −ωi λH + piλL

. . .

µm −ωm λH

ωms2 − λH −λHs2



−1

0
. . .

(1− pi)λLEi

. . .

λmEm(
λLEm−1

s1−s2
+ 1

1−s2

)
s2
2


.(48)
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Vector U : Similarly we can find the tail of U . We know from (38) that, for states i ≥ m,

λHum+q − (mµ + λH + λL)um+q+1 + mµum+q+2 = πm+q+1.

Define fu(s) =
∑∞

q=0 um+qs
q, then

fu(s) =
πm

mµ/λH−ss
2 − (mµ + λH + λL)ums + mµ [um + um+1s]

λHs2 − (mµ + λH + λL)s + mµ
(49)

=
hu(s)

(s− 1/s1)(s− 1/s2)(s−mµ/λH)
. (50)

Because hu(s) is a quadratic polynomial of s, it can be further simplified to (it is easy to check that

mµ/λH 6= 1/s1 and mµ/λH 6= 1/s2):

fu(s) =
au

s− 1/s1
+

bu

s− 1/s2
+

cu

s−mµ/λH
, (51)

where au, bu, and cu are constants that can be determined as

au = f(s) (s− 1/s1) |s=1/s1
, bu = f(s) (s− 1/s2) |s=1/s2

, cu = f(s) (s−mµ/λH) |s=mµ/λH
. (52)

Because s1 > 1, we must have au = 0, which yields:

[(mµ + λH + λL)/s1 −mµ]um − (mµ/s1)um+1 =
πm

mµ/λH − 1/s1
/s2

1. (53)

Expanding (51), and using (53), we obtain the tail of u:

um+q = −bus1+q
2 − cu (λH/(mµ))1+q . (54)

And the rest of the vector U can be solved as follows:

u0

. . .

ui

. . .

um

um+1

 =





−ω0 λ̄

. . .

µi −ωi λH + piλL

. . . λH

µm −ωm
ωm
s1
− µm

µm+1 −µm+1

s1



T

−1

π0

. . .

πi

. . .

πm
πm/s2

1
µm+1

λH
− 1

s1


. (55)

U · V : (46) and (54) allow us to express U · V as

U · V =
m−1∑
i=0

uivi + buav
s2

s1 − s2
+ cuav

λH

mµs1 − λH
+ bucv

s2

1− s2

+cucv
λH

mµ− λH
− budv

s2

(s1 − s2)2
− cudv

mµλH

(mµs1 − λH)2
. (56)
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E.2 k-step correlation

Our approach to the 1-step correlation can be extended to the k-step correlation for any k:

fk = ΓF k−1 + AF k. (57)

The Laplace transform of this gives us:

f̂k(s) =
Γ
s
f̂k−1(s) +

A

s
f̂k(s) ⇒ (sI −A)f̂k(s) = Γf̂k−1(s). (58)

This easily gives us that

f̂k(s)|s=0 = −A−1Γf̂k−1(s)|s=0 =
(
−A−1Γ

)k
.

To avoid double superscripts, we will use the overhead dot to represent derivatives. Then differ-

entiating (58) we also obtain:

f̂k(s)|s=0 + (sI −A) ˙̂
fk(s)|s=0 = Γ ˙̂

fk−1(s)|s=0 (59)(
−A−1Γ

)k −A
˙̂
fk(0) = Γ ˙̂

fk−1(0) (60)
˙̂
fk(0) = A−1

(
−A−1Γ

)k −A−1Γ ˙̂
fk−1(0). (61)

Given that ˙̂
f1(0) = f̂ ′(0) = −A−2Γ, this recursive definition can be used to find the k-step serial

correlations. The details are complex and are omitted here.

F The Pooled-Overflow System when µH May Differ From µL

In this appendix, we consider a more general class of systems in which µH may differ from µL.

(Systems in which µH = µL represent a special case.) We note that, when µH 6= µL, our analysis of

the dedicated-overflow and inverted-V schemes is not affected, since capacity for type-H and type-L

calls is partitioned.

Because the pooled-overflow scheme shares in-house capacity across both types of calls, its analysis

does become more complex, however. Appendix F.1 proves that, among type-H priority policies,

there are stationary, type-H work-conserving policies that maximize the in-house throughput of

type-L calls. It then formulates a linear program with O(m2
I) variables and O(m2

I) constraints that

identifies such an optimal policy. Appendix F.2 extends Appendix D’s analysis of the moments of

the inter-overflow time CV to include cases in which µH may not equal µL.

For notational convenience, we drop the subscript, I, from the number of in-house CSRs, mI .

Thus, the total number of in-house CSRs is referred to as “m” below.
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F.1 An LP for Finding Optimal Type-H Priority Policies

In Section 4.1, we derived the optimality of (L, pL) policies using the NLP (3)–(6). For the more

general case in which µH may not equal µL, we use a different, linear programming (LP) approach

to solve the constrained optimization problem.

As before, we define the state and action spaces, S and A, in terms of numbers of calls. The

dimensionality of the state space in the LP will be greater than that in the NLP of Section 4.1,

however. Instead of simply tracking the total number of calls in the system, we now must mark how

many CSRs are busy with type-H and type-L calls, respectively. Furthermore, we will track system

performance before (rather than after) action, and we need to record the presence or absence of an

arriving type-L call.

Formally, we now define each state of the system, s ∈ S, at discrete event epoch t as follows. Let

S = {(iH , iL, qH , qL) : iH , iL ≥ 0; iH + iL ≤ m; qH ≥ 0; qL ∈ {0, 1}} (62)

and st ∈ S be the number of calls in service or in queue at t: iH represents the number of type-H

calls in service; iL, the number of type-L calls in service; and qH , the number of type-H calls in

queue. If the event at t is an arrival of a type-L call, then qL = 1; otherwise qL = 0.

Again, st = (iHt , iLt , qH
t , qL

t ) represents the state of the system at transition t, before any action

is taken. In contrast, the analysis of Section 4.1 focused on the states after actions are taken, the

after-action states. Nevertheless, in the following analysis, it will sometimes be useful for us to refer

to after-action states. We do so by denoting the after-action states with an overbar above the state

descriptor: that is, after-action states are s̄ ∈ S̄.

Because arriving type-L calls are either immediately put into service or routed to the outsourcer,

there never exists a type-L call in queue after action, and we drop element q̄L from the descriptor.

Thus the after-action state space becomes

S̄ = {(̄ıH , ı̄L, q̄H) : ı̄H , ı̄L ≥ 0; ı̄H + ı̄L ≤ m; q̄H ≥ 0} , (63)

and s̄t = (̄ıHt , ı̄Lt , q̄H
t ) denotes the after-action state at transition t.

In any state, a system controller may put one or more calls into service, or it may do nothing.

Accordingly, let cH and cL be the numbers of type-H and type-L calls put into service at an arbitrary

event epoch. We define the set of feasible actions in state s ∈ S to be

As = {(cH , cL) : cH , cL ≥ 0; cH + cL ≤ m− (iH + iL); cH ≤ qH ; cL ≤ qL}, (64)

and the action taken at time t to be at ∈ Ast . We denote the superset of all feasible actions as

A = {(cH , cL) : 0 ≤ cH ≤ m; cL ∈ {0, 1}; (cH + cL) ≤ m} ⊇ As for all s ∈ S. Observe that A is

finite.

A policy is a rule that the system controller uses to choose an action to take at each event epoch

t. Let Ht = {(s0, a0), . . . , (st−1, at−1) ∪ st}, be the history of the system up to event epoch t. Then
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a non-anticipating policy is a rule which, given Ht, chooses an action at, possibly at random, among

the actions of Ast . A type-H priority policy never puts type-L calls into service when there is a

type-H call in queue. We define Π to be the class of all non-anticipating, type-H priority policies.

The objective is to find a policy, π ∈ Π, that maximizes the rate at which type-L calls are served

in house. For a given before-action state, s ∈ S, define the reward associated with action a to be

R(s, a). We let R(s, a) equal the number of type-L calls put into service. In turn, we define

R̄π(s) def= lim inf
n→∞

1
n

Eπ

[
n−1∑
t=0

R(st, at)|s0 = s

]
(65)

to be the long run average rate at which a policy π ∈ Π serves type-L calls.

Because the state space is defined in terms of system occupancy, it is convenient for us to account

for type-H calls’ service-level in terms of occupancy as well. We denote by D(s, a) the “delay cost”

associated with state-action combination (s, a), and we let D(st, at) be some non-negative function

of the number of type-H calls remaining in queue after the policy’s action at t.

In particular, we let d(q̄) be the delay-cost function associated with the after-action queue length

q, and let the constraint on the type-H service level be that the long-run average delay cost be no

more than D∗. For the delay-cost function d(q̄), we assume:

Assumption 1

i) d(0) = 0 and d(q̄) is nondecreasing in q̄;

ii) supq̄ d(q̄) > D∗; and

iii) d̃(α) def=
∑∞

q̄=0 αq̄ d(q̄) <∞ for all α ∈ (0, 1).

Item (i) ensures that the cost increases as the backlog grows. Let H(n) be the number of type-H

arrivals put into serve in the first n transitions. Then together items (i) and (ii) imply that any

sample path for which limn→∞H(n)/n < λH is also one for which limn→∞ d(q̄)/n > D∗, and thus

violates the service level constraint. Finally, item (iii) defines the generating function d̃ and implies

that the service-level cost of occupancy grows sub-exponentially. All of these restrictions are satisfied

by formulations of standard service-level constraints, such as bounds on expected occupancy and on

the tail distribution of occupancy.

In turn, we define

D̄π(s) def= lim sup
n→∞

1
n

Eπ

[
n−1∑
t=0

D(st, at)|s0 = s

]
, (66)

and we require that D̄π(s) ≤ D∗, where D∗ is an exogenously defined upper bound on the average

backlog cost.
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Although D(s, a) and D̄π(s) are defined as functions of queue occupancy, rather than delay in

queue, in many cases they are equivalent. In particular, given the use of a stationary policy, one can

use Little’s Law to translate between several common versions of occupancy and delay constraints.

(See Gans and Zhou [21].)

Using these definitions of reward and cost, we can formally state the problem of maximizing the

throughput of type-L calls, subject to the service level constraint on type-H queue, as follows:

sup
π∈Π

R̄π(s) s.t. D̄π(s) ≤ D∗ . (67)

Any policy π that satisfies the constraint in (67) is called feasible. If it also achieves the supremum

in (67), then it is optimal or solves the constrained optimization problem (COP).

In turn, we can characterize an easily computable class of policies that solves the COP. For the

general case, in which µH may not equal µL, there exist optimal policies π ∈ Π that are type-H

work conserving. These work-conserving policies never allow a type-H call to queue when there is an

idle CSR. Furthermore, among type-H priority, type-H work-conserving policies, there are, in turn,

stationary (history-independent) policies that are optimal. We call the class of stationary, type-H

priority, type-H work-conserving policies Π∗. Below, we will show that, among all policies in Π, there

exist policies within Π∗ that maximize the throughput rate of type-L calls.

The first step is to show that, by considering only type-H work conserving policies we do not

unintentionally degrade system performance. The lemma can be proved using the argument that

proves Lemma 7 in [21].

Lemma 3 Suppose there exists a feasible type-H priority policy, π. Then there exists a feasible

type-H priority, type-H work-conserving policy π with the same throughput as π.

The lemma allows us to significantly simplify the problem. If a policy gives priority to and is

work conserving with respect to type-H calls, then it must be the case that ı̄H < m =⇒ q̄H = 0

and q̄H > 0 =⇒ ı̄H = m. This allows us to reduce the state-space, any eliminating a separate

identifier for the state of the type-H queue. We therefore let

S = {(iH , iL, qL) : iH ≥ 0; 0 ≤ iL ≤ m; qL ∈ {0, 1}}, (68)

where iL and qL are defined as before. Similarly, the after-action state space becomes

S̄ = {(̄ıH , ı̄L) : ı̄H ≥ 0; 0 ≤ ı̄L ≤ m}. (69)

Actions also simplify. At time 0, a type-H work-conserving policy puts as many type-H calls

into service as possible. Then at subsequent event epochs there will never be the opportunity to put

more than one type-H call into service at a time – otherwise the policies will not have been work

conserving. By the same argument, it will never be the case that a type-H and type-L call are put
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into service at the same time. Therefore, at any event after which there exists a type-H call in queue,

there is only one optimal action – put the type-H call into service. We can embed this action into

the state transitions of the Markov chain.

Without loss of generality, we define the time scale so that λH +λL +m(µH +µL) = 1. Therefore,

we may view transition rates as probabilities. For example, λH = λH
λH+λL+m(µH+µL) equals the

expected number of type-H arrivals per period, as well as the probability that the next event is a

type-H arrival.

The state transitions of the Markov chain are as follows:

(iHt+1, i
L
t+1, q

L
t+1) =


(̄ıHt + 1, ı̄Lt , 0), w. p. λH ;
(̄ıHt , ı̄Lt , 1), w. p. λL;
(̄ıHt − 1, ı̄Lt , 0), w. p. min{ı̄Ht ,m− ı̄Lt }µH ;
(̄ıHt , ı̄Lt − 1, 0), w. p. ı̄Lt µL; and
(̄ıHt , ı̄Lt , 0), w. p. m(µH + µL)−min{ı̄Ht ,m− ı̄Lt }µH − ı̄Lt µL.

(70)

Here, min{ı̄Ht ,m− ı̄Lt } represents the number of type-H calls in service, after action, at epoch t. In

turn, feasible actions reduce to

As = {cL : cL ∈ {0, 1}; cL ≤ (m− (iH + iL))+}, (71)

where (m− (iH + iL))+ denotes the number of idle servers. In turn, A = {0, 1}.

Thus, the complexity of the routing problem has been reduced substantially. There exist only
m(m+1)

2 states in which a type-L call has arrived to a system with at least one CSR free, and in

each of these states there are only two feasible actions: accept or reject the call. When all m CSRs

become busy, there are no decisions to be made, and the evolution of the system states follows a

Markov chain.

Furthermore, using arguments analogous to those used in [21], we can show that each type-H

priority, type-H work conserving policy that is stationary and deterministic also: i) induces a single,

positive recurrent class of states, with expected absorption time into that class that is finite; ii)

has limiting state-action frequencies which correspond to the stationary distribution of the induced

Markov chain; and iii) has uniformly integrable one-period revenues. Therefore, we can appeal to

Theorem 7.1 in Altman and Schwartz [2] to show that there exist stationary, type-H priority, type-H

work conserving policies that are optimal:

Lemma 4 If there exists a policy π ∈ Π that is feasible, then exists a policy π ∈ Π∗ that is optimal.

The result in [2] also implies that we can formulate an LP whose optimal solution identifies the

optimal policy.

Because the set of states in which all m CSRs are busy is infinite, the LP has an infinite set of

balance equations. Nevertheless, we can use algebraic substitution to develop closed-form expressions

for essential quantities related to these tail states and make the LP finite. More specifically, under
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the following assumption, we can collapse the states of the Markov chain when all m CSRs are busy

into a set of O(m2) linear equations.

Assumption 2

i) The pool-H queue is stable: ρ < 1.

ii) Either µH ≤ µL or λH 6= m(µH − µL).

The first condition allows us to show that any policy π ∈ Π∗ achieves a steady state with uniformly

bounded costs. The second condition, which occurs almost surely, allows us to use a set of generating

functions to collapse the “tail” states of the Markov chain induced by a stable, stationary policy.

Remark 1 Part (ii) of Assumption 2 is a technical assumption that assures that the denominator of

the generating function used in Lemma 5, below, has distinct roots. This simplifies the expression of

the partial fraction expansion. In the case that part (ii) of Assumption 2 is violated, we can still use

the generating-function approach to formulate an analogous, finite LP, albeit one with more complex

expressions. For details, see [21]. Because the assumption is essentially never violated, however, we

omit the treatment of this case, here.

Let ξi,j,k(a) be the stationary probability of entering (before-action) state (iH = i, iL = j, qL = k)

and taking action a ≡ cL. Then the following lemma shows that the tail probabilities can be

conveniently characterized:

Lemma 5 (Gans and Zhou [21])

Let

γ1(j)
def=

λH

λH + (m− j)µH + jµL
, (72)

γ2(j)
def=

(m− j)µH

λH + (m− j)µH + jµL
, and (73)

γ3(j)
def=

(j + 1)µL

λH + (m− j)µH + jµL
. (74)

If the conditions of Assumption 2 hold, then for each j the quadratic equation

g(j, z) def= γ2(j)z2
j − zj + γ1(j) = 0 (75)

has roots zj ≤ z′j with 0 < zj < 1. In turn, for any policy π ∈ Π∗ there exists constants aj,l such

that

am,m =
1∑

a=0

ξ0,m−a,a(a) (76)

aj,j =
1∑

a=0

ξm−j,j−a,a(a) +
γ3(j)
γ2(j)

1∑
a=0

ξm−j−1,j+1−a,a(a)
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+
γ3(j)zj

γ2(j)(z′j − zj)

∑
k≥j+1

aj+1,k

1− zk/zj
−

γ3(j)z′j
γ2(j)(z′j − zj)

∑
k≥j+1

aj+1,k

1− zk/z′j

∀ 0 ≤ j ≤ m− 1 (77)

aj,k =
−γ3(j)

γ2(j)(1− zj/zk)(1− z′j/zk)
aj+1,k ∀ 0 ≤ j < k ≤ m, (78)

and
1∑

l=0

ξm−j+q,j,l(0) =
m∑

k=j

aj,kz
q
k, ∀0 ≤ j ≤ m,∀q ≥ 1. (79)

Thus, given Assumption 2, for any policy π ∈ Π∗, the tail states of the Markov chain can be

represented as mixtures of geometric series, and we can use (79) to collapse the tail and formulate a

finite-dimension LP.

We define the LP that finds a policy π ∈ Π∗ that maximizes the throughput of type-L calls.

Specifically, let s = (i′, j′, k′) be shorthand for a given before-action state, and let K(i, j) be the

set of state-action pairs (s, a) that land the system in after-action state (i, j). If K(i, j) = ∅ then

interpret the associated summation as equal to zero. Then, using (72)-(79) from Lemma 5, the

following LP finds a constrained optimal policy:

max
∑

i+j<m

ξi,j,1(1) (80)

s. t.

ξi,j,0(0) = λH

∑
(s,a)∈K(i−1,j)

ξs(a) + (i + 1)µH

∑
(s,a)∈K(i+1,j)

ξs(a) + (j + 1)µL

∑
(s,a)∈K(i,j+1)

ξs(a)

+ ((m− i)µH + (m− j)µL)
∑

(s,a)∈K(i,j)

ξs(a) 0 ≤ i + j ≤ m− 1 (81)

1∑
a=0

ξi,j,1(a) = λL

∑
(s,a)∈K(i,j)

ξs(a) 0 ≤ i + j ≤ m− 1 (82)

ξm−j,j,0(0) = λH

∑
(s,a)∈K(m−j−1,j)

ξs(a) + (j + 1)µL

m∑
k=j+1

aj+1,kzk + (m− j)µH

m∑
k=j

aj,kzk

+ (jµH + (m− j)µL)
∑

(s,a)∈K(m−j,j)

ξs(a) 0 ≤ j ≤ m− 1 (83)

ξ0,m,0(0) = mµH

∑
(s,a)∈K(0,m)

ξs(a) (84)

ξm−j,j,1(0) = λL

∑
(s,a)∈K(m−j,j)

ξs(a) 0 ≤ j ≤ m (85)

am,m =
1∑

a=0

ξ0,m−a,a(a) (86)

aj,j =
1∑

a=0

ξm−j,j−a,a(a) +
γ3(j)
γ2(j)

1∑
a=0

ξm−j−1,j+1−a,a(a)
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+
γ3(j)zj

γ2(j)(z′j − zj)

∑
k≥j+1

aj+1,k

1− zk/zj
−

γ3(j)z′j
γ2(j)(z′j − zj)

∑
k≥j+1

aj+1,k

1− zk/z′j

∀ 0 ≤ j ≤ m− 1 (87)

aj,k =
−γ3(j)

γ2(j)(1− zj/zk)(1− z′j/zk)
aj+1,k ∀ 0 ≤ j < k ≤ m (88)

m∑
j=0

m∑
k=j

aj,kd̃(zk) ≤ D∗ , (89)

∑
i+j≤m

1∑
k=0

∑
a∈As

ξi,j,k(a) +
m∑

j=0

m∑
k=j

aj,k
zk

1− zk
= 1 (90)

ξs(a) ≥ 0 ∀s ∈ S, a ∈ As . (91)

Here, the objective function (80) maximizes the rate at which type-L calls are put into service.

The constraints (81)–(88) are the system’s balance constraints. Of these, (86)–(88) define the ξi,j,ks

associated with boundary states in terms of the geometric series of Lemma 5. Constraint (89) ensures

that the service-level is met and (90) that probabilities sum to one. Constraints (91) ensure that

the probabilities are non-negative. (Note that the LP formulation must drop one redundant balance

equation. See §8.8 in Puterman [39].)

Thus, an optimal policy π ∈ Π∗ ⊂ Π can be found via the solution of the LP. The following

theorem summarizes and formalizes all the results so far:

Theorem 3

Suppose Assumptions 1 and 2 hold. Then there exists an LP (80)–(91) with O(m2) variables and

O(m2) constraints which is feasible if and only if there exists a policy π ∈ Π that is feasible as well.

The optimal solution of the LP determines a policy π ∈ Π∗ that solves the COP (67).

We note that, although the proof of Theorem 3 is a direct analogue to that used when λL =∞,

differences in the two systems’ type-L call dynamics leads the LP in the current paper to differ from

– and to have fewer decision variables than – the LP in [21]. In particular, the fact that λL < ∞
implies that at most one type-L call can be put into service at a time. This is not the case when

λH =∞, however. Therefore, the current LP has O(m2), rather than the O(m3), decision variables.

F.2 Inter-Overflow Time CV in the Pooled-Overflow System

Next, we extend the results regarding the moments of inter-overflow time, in particular Proposition 4,

to the case in which µH may not equal µL. Rather than limiting the analysis to randomized threshold-

reservation policies, (L, pL), our analysis in this section holds for the overflow process that results

from any stationary, type-H priority, type-H work conserving policy π ∈ Π∗. For example, the

policies can be derived using Theorem 3 and the associated LP formulation (80)-(91).
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For brevity, let T̃̄,q̄ denote the time to the next type-L call “overflow” starting in after-action

state (m− ̄ + q̄, ̄), and let T̄,q̄(θ) be its Laplace transform. Then,

Proposition 5

T̄,q̄(θ) =
̄∑

k=0

ā,kzk(θ)q̄ +
λL

λL + θ
,

where

zk(θ) =
(λH + λL + (m− k)µH + kµL + θ)−

√
(λH + λL + (m− k)µH + kµL + θ)2 − 4(m− k)µHλH

2λH

and ā,k, ∀ 0 ≤ k ≤ ̄ ≤ m, are constants uniquely determined by {T̄,0(θ), T̄,1(θ)}.

Proof

The proof will proceed in three steps:

1. Show that

Tj,q̄(θ) =
j∑

k=0

aj,k(zk(θ))q̄ + a′j(z
′
j(θ))

q̄ +
λL

λL + θ
,∀j, q̄, (92)

for the zks given in the proposition statement and some z′j > 1.

2. Show that limq̄→∞ Tj,q̄(θ) = λL
λL+θ ,∀ j.

3. From the first two steps, we must have a′j = 0,∀j, because z′j > 1.

Let fj(z, θ) def=
∑∞

q̄=0 Tj,q̄(θ)zq̄, then it suffices to show

fj(z, θ) =
j∑

k=0

aj,k

1− zk(θ)z
+

a′j
1− z′j(θ)z

+
λL/(λL + θ)

1− z
∀ j.

In what follows, when it is clear from the context we will again suppress the θ notation to simplify

the exposition.

Again, we let T̃s denote the time to next overflow if the in-house call center is in state s. Based

on (7), these random variables are sufficient to specify the general inter-overflow time distribution.

Moreover, it is sufficient for us to focus on the states where all CSRs are busy. For brevity, let T̃j,q̄

denote the time to next overflow if the in house call center is in state (m − j, j, q̄). Moreover, let

ωj = λH + λL + (m− j)µH + jµL, and let ẽωj denote an exponential random variable with rate ωj .

Then we have the following equations, which are analogues to (8) for the case in which µH = µL:

T̃j,q̄ = ẽωj +



T̃j,q̄−1 w.p. (m− j)µH/ωj

0 w.p. λL/ωj

T̃j,q̄+1 w.p. λH/ωj

T̃j−1,q̄−1 w.p. jµL/ωj

∀ q̄ ≥ 1 (93)
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and

T̃0,q̄ = ẽω0 +


T̃0,q̄−1 w.p. mµH/ω0

0 w.p. λL/ω0

T̃0,q̄+1 w.p. λH/ω0

∀ q̄ ≥ 1. (94)

If we let γ1(j) = (m−j)µH

ωj+θ , γ2(j) = λH
ωj+θ , γ3(j) = λL

ωj+θ , and γ4(j) = jµL
ωj+θ , then the above

transition equations result in the following equations for the corresponding Laplace transforms:

Tj,q̄ =
(m− j)µH

ωj + θ
Tj,q̄−1 +

λL

ωj + θ
+

λH

ωj + θ
Tj,q̄+1 +

jµL

ωj + θ
Tj−1,q̄−1

= γ1(j)Tj,q̄−1 + γ3(j) + γ2(j)Tj,q̄+1 + γ4(j)Tj−1,q̄−1 ∀q̄ ≥ 1, j ≥ 1 (95)

and

T0,q̄ =
mµH

ω0 + θ
T0,q̄−1 +

λL

ω0 + θ
+

λH

ω0 + θ
T0,q̄+1. (96)

Note that we have γ1(j) + γ2(j) < 1, ∀j. So if we let zj and z′j be the two roots of γ2(j)z2 − z +

γ1(j) = 0 such that zj ≤ z′j , then we must have 0 < zj < 1 < z′j ,∀j.

We first solve (96). Using the same generating function approach we used to prove Proposition 4,

we obtain the following solution:

T0,q̄ = a0,0z
q̄
0 + a′0,0z

′q̄
0 +

λL

λL + θ
.

To complete the first step, we then use induction on j (starting from j = 0) to show that the

solution to (95) is (92). The induction proof is similar to that in [21] for Lemma 10. Moreover, the

proof of steps 2 and 3 are similar to that for Proposition 4; we will not repeat them here. 2

As in the case of µH = µL, Proposition 5 allows us to reduce the infinite number of linear

equations (of the Laplace transforms) to a finite number, and we can solve these linear equations

completely. By (7), we obtain the Laplace transform of the inter-overflow time distribution. Even

though the Laplace transform may be difficult to invert, we can repeatedly differentiate it to obtain

its moments, just as we did in (25) and (27) for the case of µH = µL.
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