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Abstract 
 
The performance metric used to evaluate on-time performance in the US airline 
industry is flight-based, measuring the number of flight legs with arrival delay of 15 
minutes or more.  We analyze airline passenger operations and schedule 
performance and conclude that this flight-based performance metric does not 
accurately reflect delays to passengers, primarily because it does not recognize the 
long passenger delays resulting from flight leg cancellations and missed 
connections.  Using passenger bookings and flight operations data from a major US 
airline, we develop a Passenger Delay Calculator to compute passenger delays 
and to establish relationships between passenger delays and cancellation rates, 
flight leg delay distributions, load factors, and flight schedule design.  Using the 
insights gained in our analysis, we define new passenger-centric metrics to address 
the shortcomings of existing flight-based metrics and more accurately evaluate 
schedule reliability.  
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1 Introduction 

 
Although flight schedules and ticket prices have proven to be the main drivers of 
airline profitability (Gopalan and Talluri [GoT98]), studies show that on-time 
performance and service reliability are important to achieving long-term 
profitability.  Heskett et al. [HLS94] show that customer satisfaction and loyalty drive 
long-term corporate profitability and growth.  This point is illustrated by the America 
West Airlines experience in 1999. America West “found itself at the bottom of the 
DOT Consumer Report,” and “… business load fell 2 points in the second half of 2000 
as high-yield travelers decamped to other airlines. This contributed to a 98% fall in 
annual profits” (Flint [Flin00]). 

 
Because the airline industry is a highly competitive business, service reliability can 
serve as a major competitive advantage to attract and retain passengers; 
especially business passengers who are time sensitive and particularly important to 
airline profitability (Belobaba and Simpson, [BeS82]).  Moreover, low service reliability 
can result in decreasing average fares (Janusewski [Jan02]).  Janusewski cites 
LaGuardia airport as an example of this, noting that airlines charged lower fares in 
2000 when flight delays at LaGuardia were particularly high. 
 
Airlines are able to schedule as many flights as they desire at all but four major 
airports in the domestic US. O’Hare International Airport (ORD), Reagan National 
Airport (DCA), Kennedy International (JFK) and LaGuardia (LGA) airports are the 
only slot constrained airports in the US, that is, the only airports at which the number 
of scheduled arrivals and departures are constrained by the government.  The 
growing economy of the 90's led airlines to increase service, and to sometimes 
schedule more flights than airports could handle, even in optimal weather 
conditions.  According to the Bureau of Transportation Statistics (BTS), the number of 
flights operated by commercial airlines in the United States from 1990 to 2000 grew 
from 6.6 million in 1989 to 9.0 million in 2000, a 36% increase. In that same period, 
airport capacity increased by only 1% (Federal Aviation Administration, [FAA01]).  As 
more and more flights were scheduled at congested airports, ground congestion 
became a major impediment to efficient operations, and taxi-out times at major US 
airports increased sharply.  According to the BTS ([Mea01]), the number of flight legs 
with taxi-out times exceeding one hour increased by 165% from 1995 to 2000, from 
17,331 to 45,993.  Moreover, the disproportionate increase in flights relative to total 
airport capacity resulted in severe system congestion and numerous flight delays 
and cancellations, adversely affecting the traveling public. 
 
From 1995 to 2000, the number of passenger complaints recorded by major US 
airlines (source: DOT Air Travel Consumer Reports) and the number of news articles 
reporting poor performance in airline service reliability (source: Lexis-Nexis) rose 
dramatically (Table 1-1). 
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Table 1-1: Airline passenger dissatisfaction 

 
Although a growing number of dissatisfied travelers in this period were able to file 
their complaints more readily via emails, Mitra [Mit01] argues that this factor alone 
does not account for the severe increase in passenger complaints.  According to 
the DOT Air Travel Consumer Report, the most common complaints involved flight 
problems, defined as “flight cancellations, delays, or any other deviations from 
schedule, whether planned or unplanned”. 
 
The deterioration of schedule reliability was so severe that in 2000, public concerns 
and media coverage resulted in the introduction of the Shuster Passenger Bill of 
Rights, requiring airlines to: 
 

 Provide reasons of flight schedule disruptions to the passengers; and 
 
 Compensate passengers if they waited for more than two hours on the 

runways prior to take-off or after landing. 
 

Although this bill was not passed, airlines responded with Customer First Plans that 
recognized the importance of notifying customers of known delays, cancellations 
and diversions. For more details on the Customer First Plans see 
http://www.customers-first.org/commitment1.html.   

1.1 On-time performance measurements in the US 

 US regulators and airlines measure on-time performance using the 15 minute on-
time performance (15OTP) metric, also called the airline dependability statistic.  With 
this metric, a flight leg is considered to be on time if it arrives less than 15 minutes 
after its scheduled arrival time, and a canceled flight is classified as a delayed flight.  
Since 1987, the general public has had access on a monthly basis to flight delay 
statistics published in the Air Travel Consumer Report and maintained in the Airline 
Service Quality Performance (ASQP) database.  The major airlines in the US (defined 
as airlines generating revenues of $1 billion or more annually) are required by 
federal law to provide regulators with flight operation information, including actual 
departure time, arrival time, and cancellation and diversion data, for each 
domestic US flight leg serviced by jet aircraft.   In Figure 1-1 (source: ASQP), we 
depict on-time performance from 1995 to 2000, as measured by the industry 15OTP 
yardstick of airline on-time performance; and; the percentage of flight legs 
canceled or arriving later than scheduled.  With these two flight delay statistics 
alone, it is difficult to explain the sharp increase in passenger complaints and 
negative press reports shown in Table 1-1. 

 1995 2000 Ratio (2000/1995) 
Number of articles in US newspapers 22 101 4.6 
Complaints (Per 100,000 passengers) 0.76 2.98 3.9 

http://www.customers-first.org/commitment1.html�
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Figure 1-1: Trends in flight schedule performance  

 
Shumsky [Shu93] and Hall [Hal99] report that US carriers have responded to the 
15OTP metric by increasing planned block times and/ or scheduled gate-to-gate 
times for flight legs. Between 1973 and 1994, planned block times increased 
significantly, with continued growth at a slower rate between 1994 and 1999.  This 
increase is a response to two factors: 
 

  The introduction of the 15OTP in 1987. In order to improve on-time 
performance, airlines increased their block times; and 

 
  The increase in airspace and airport congestion. The number of jet-

operated flights scheduled by US major airlines in the domestic US at Boston 
Logan Airport (BOS), for example, increased by 16.1% from 1995 to 1999 
(source: ASQP), while the airport capacity remained unchanged. 

 
While longer planned block times can improve on-time performance, they result in 
greater operating costs (for example, crew costs increase) and in reduced 
productivity (for example, aircraft utilization decreases).  Average actual block time 
has increased by 5 minutes from 1995 to 1999 for the 100 routes with the highest 
frequency in 1999.  (A route is the sequence of one or more flight legs serving an 
origin/destination airport pair.  By convention, flight legs from an origin airport o to a 
destination airport d constitute a route, while the return flight legs from d to o 
represent a different route, called the opposite route.  We define the frequency of 
route r to be the number of times it is flown.)  The incremental operating costs 
associated with increased block times are estimated at $1 billion, assuming an 
average direct operating cost of $1,800/hour and ignoring opportunity costs (that is 
the potential passenger revenue gain using 1995 block times). 
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Caulkins et al. ([CBL93]) examine this trade-off between on-time performance and 
its related costs.  They argue that airlines operating at congested airports are 
disadvantaged by the 15OTP metric.  They propose alternative approaches to 
estimate schedule reliability that compare airline schedule performance at an 
airport with average on-time performance of all airlines at that airport.   
 
The 15OTP metric and the approaches suggested by Caulkins et al. are "flight-
centric" measures of schedule reliability, each measuring delays to aircraft.  In this 
paper, we present "passenger-centric" metrics aimed at measuring passenger 
delays and expressing schedule reliability as a function of passenger experiences.  
We demonstrate, for period 1995 to 2000, that there is a discrepancy between 
passenger perceptions of delay and delay as described by flight-based delay 
statistics.  Note that we have chosen not to present more recent statistics (from 2001 
to 2003) because we believe they represent anomalies in air transportation trends 
due to the September 11, 2001 terrorist attack and the economic recession. 

1.2 Outline 

In section 2, we describe our passenger delay calculator to quantify passenger 
delays, given passenger booking and flight leg delay and cancellation data.  We 
show, in Section 3, that existing flight-based delay metrics are not accurate 
surrogates of passenger delays for hub-and-spoke airlines.  Using our passenger 
delay calculator, we demonstrate that existing metrics are inadequate because 
they do not capture the effects of passenger disruptions caused by missed 
connections and flight leg cancellations.   Using our delay calculator, we establish 
relationships between passenger delays and cancellation rates, flight leg delay 
distributions, load factors, and flight schedule design.  Based on our findings, we 
propose in Section 4, new flight-based metrics to measure schedule performance.   

2 Quantifying passenger delay 

Knowledge of aircraft delays is critical to many airline functions.  Without this 
information, for example, aircraft maintenance compliance and crew salary 
calculations cannot be performed.  Passenger delays, however, have not been 
recorded historically, primarily because they are not indispensable to airline 
operations.  As a result, passenger-based delay metrics are not commonly used in 
the industry.  In this section, we develop the Passenger Delay Calculator algorithm 
(PDC) to: 
 

 Estimate passenger delay in order to better measure passenger schedule 
reliability in the airline industry; and 

 
 Recover disrupted passengers in real-time. 

2.1 Definitions 
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To facilitate our description of PDC, we introduce the following notation and 
definitions.  A non-stop flight leg f, also referred to more succinctly as flight f, is 
defined by a flight number, an origin airport, a destination airport, a planned 
departure time, PDT(f), and a planned arrival time, PAT(f).  In operations, AAT(f)  
represents the actual arrival time of flight leg f at the gate and ADT(f), the actual 
departure time from the gate.  The flight arrival delay of f, denoted FAD(f), equals 
max(AAT(f) - PAT(f); 0) and the flight departure delay, denoted FDD(f), equals 
max(ADT(f) - PDT(f); 0). 

 
A scheduled itinerary is a sequence of scheduled flights serving a group of 
passengers. The group of passengers on a given scheduled itinerary is called a 
scheduled passenger type.  If a scheduled itinerary contains only one flight leg then 
passengers are referred to as local, otherwise they are connecting.  For a given day 
of operations, passengers are operated on a sequence of flight legs called the 
actual itinerary.  A passenger is disrupted if: 
 

 One or more of the flights in his/her scheduled itinerary is canceled; or 
 
 The time between consecutive flights in his/her scheduled itinerary is less 

than the Minimum Connecting Time (MCT); that is, the minimum time 
required to walk between the arrival and departure gates of the 
consecutive flight legs.  

 
Hence, scheduled and actual itineraries of disrupted passengers are different.  
Alternatively, non-disrupted passengers have the same scheduled and actual 
itineraries. Thus, the set of passengers P  can be partitioned into subsets: D  and ND , 
corresponding respectively to the set of disrupted and non-disrupted passengers. 
The queue of passengers to be re-accommodated by the airline is denoted DQ.  Let 
DT(p) be the disruption time of passengers of type p and, d(p) the passenger arrival 
delay for passenger type p, computed as the maximum of zero and the difference 
between p’s actual arrival time and scheduled arrival time. Hence, letting L(p) 
denote the last flight in p's actual itinerary, d(p) = max(AAT(L(p)) - PAT(L(p)); 0).  We 
denote the maximum passenger delay as MPD. 

2.2 Passenger Delay Calculator  

Inputs to PDC include: 1) the planned flight schedule with given aircraft routings, 2) 
for each scheduled itinerary and corresponding passenger type, the number of 
booked passengers and their show-up rates (that is, the fraction of passengers of a 
given type who book seats and show up for their flight legs); and 3) the actual flight 
leg departure and arrival delays for each operated leg in the schedule; and 4) 
each canceled flight leg.    
 
The steps of the PDC algorithm are illustrated in Figure 2-1.  
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Figure 2-1: Passenger Delay Calculator schematic 

 
In STEP 1, for each itinerary in the schedule, we determine the set of disrupted 
itineraries and their associated passenger types.  In Step 2, disrupted passengers are 
placed in a recovery queue according to a specified recovery policy.  In STEP 3, 
each disrupted passenger is re-accommodated on the recovery itinerary with seat 
availability that arrives earliest at the desired destination.  In STEP 4, disrupted 
passengers, for whom there are no efficient recovery itineraries within a specified 
time frame, are assumed recovered on other airlines.  In STEP 5, passenger delays 
and schedule reliability statistics are computed.   
 
Details of the steps of PDC are as follows: 
 

 STEP 1: Identify disrupted and non-disrupted itineraries 
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Consider each passenger type p on an itinerary, containing for example flight leg 
1f( ) followed by 2f( ).  The following sequential algorithm is executed to determine 

if passengers are disrupted: 
 
 Is 1f( )canceled? 
⇒ If yes, passengers are disrupted, ∈p D , and DT(p)  = 1PDT(f( ))  
   Else, is 2f( )canceled? 
  ⇒ If yes, passengers with PI are disrupted andDT(p)= 2PDT(f( )) 
     Else, is 2 1− <ADT(f( )) AAT(f( )) MCT ? 
    ⇒ If yes, passengers are disrupted, ∈p D , and DT(p)= 1AAT(f( ))  
       Otherwise, passengers of type p are not disrupted, ∈p ND ,  
        and ( )2−d(p) = Max 0;AAT(f(2)) PAT(f( )) . 

Figure 2-2: Passenger disruption evaluation 

 
In PDC, consistent with industry practice, we remove seats assigned to non-
disrupted passengers from the list of those available, ensuring that disrupted 
passengers are not assigned these seats.  Available seat inventories are 
computed by subtracting the number of non-disrupted passengers on a given 
flight leg from the total number of assigned seats.   
 

 
 

STEP 2: Order the disrupted passengers 

In the second step of PDC, we build the disrupted passenger queue.  We sort 
disrupted passengers, D , according to a selected airline recovery policy.  Various 
service policies are possible, including: 1) re-accommodating passengers using a 
first-disrupted-first-recovered policy; 2) re-accommodating passengers in order of 
decreasing fare class value; or 3) re-accommodating passengers in order of 
decreasing frequent flyer status.  Whichever policy is selected, disrupted 
passengers are sorted and processed in order.  When two different passenger 
types are disrupted at the same time, we randomly select whom to re-
accommodate first, or use other characteristics, such as generated revenue, to 
rank passengers in the recovery list. 
  

 
 

STEP 3: Re-accommodate disrupted passengers 

For each passenger, the next step in the PDC algorithm is to find the recovery 
itinerary commencing at the airport where the passenger is located and arriving 
the earliest at the passenger's desired destination.  Each recovery itinerary must 
be operationally feasible.   Operational feasibility requires that all of the flight 
legs in the recovery itinerary are operated; the time between the arrival of a 
flight leg and the departure of the next flight leg in the itinerary is greater than 
MCT; the itinerary’s first flight leg departs later than the disrupted passenger's 
ready time; and there is at least one available seat on each of the flight legs in 
the recovery itinerary.  For each disrupted passenger, we refer to the 
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operationally feasible itinerary that arrives earliest at the disrupted passenger's 
destination as the best itinerary. 
 
Assuming that the passenger is of type p, two lists of recovery itineraries are 
generated: the Direct Itinerary List (DIL(p)) for which itineraries have one flight leg 
only, and the Connecting Itinerary List, CIL(p,H), for which itineraries have 
multiple flight legs and connect through hub airport H.  DIL(p) and CIL(p,H) are 
merged and sorted in increasing arrival time, and then type p passengers are re-
assigned to the earliest arriving itineraries with seat availability.  In Section 3, the 
recovery itinerary search algorithm is described and an example is provided. 
 

 
 

STEP 4: Recover severely delayed passengers on other airlines 

In this module, disrupted passengers with delays exceeding the Maximum 
Passenger Delay (MPD) threshold (of 15 hours, see Bratu, [Brat03], for analysis 
supporting this selection) are re-accommodated on another airline. Because the 
other airlines' schedules are not known to PDC, we do not include these 
passengers in our delay statistic calculations.   
 

 
 

STEP 5: Generate outputs 

The output of the PDC algorithm is a vector of passenger delay statistics, including 
average delays for each passenger type, and sizes of different passenger groups 
including:  disrupted; non-disrupted; disrupted and recovered the same day; and 
disrupted overnight. 

3 Example: recovery of disrupted passengers 

To illustrate how disrupted passengers are aggregated into clusters, how the 
recovery list is built and how passengers are re-assigned to recovery itineraries in 
PDC, consider two scheduled passenger types, SPT 1 and SPT 2, with the following 
planned connecting itineraries: 
 

Table 3-1: Example of disrupted itineraries 

 
Assume that the airline operates 3 hubs, H1, H2 and H3, and that flight leg h, 
scheduled to depart at 7:30PM and to arrive at 9:00PM, is canceled.  Consequently, 
passengers belonging to SPT 1 and 2 are disrupted at H1. 

SPT Number of 
passengers 

Flight 
leg From To 

1 10 f  A H1 
h  H1 C 

2 5 
g  B H1 
h  H1 C 
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3.1.1 Disrupted passenger clustering 
Passenger types 1 and 2 can be aggregated within the disruption queue because: 
 

 They are disrupted at the same time (e.g., 7:30PM),  
 
 They are destined to the same airport (e.g., airport C) and, 

 
 They were originally scheduled to arrive at the same time (e.g., 9:00PM).  

 
By aggregating these two scheduled passenger types into a new, single type p, we 
generate only a single recovery list for passengers disrupted from both itineraries.  
This clustering technique is particularly useful when a flight leg departing a hub 
airport is canceled.  In this case, most passengers with a common destination can 
be clustered into the same passenger type, thereby facilitating the decision-making 
process for operations controllers and speeding up the re-accommodation process. 

3.1.2 Recovery list generation 
We generate the recovery list of itineraries from H1 to C that depart later than the 
passenger ready time (PRT).  PRT is the sum of the planned departure time of 
canceled flight leg h and the MCT for passengers to walk to the gate of the first 
flight leg in their recovery itinerary.   
 
The Direct Itinerary List for p, DIL(p), is easy to generate as it contains only flights from 
H1 to C departing later than passenger p's ready time PRT(p).  We sort these flights in 
increasing order of their arrival time at C.   
 
Next, we build the Hub H2 Connecting Itinerary List, CIL(p,H2), for passengers p.  We 
begin by sorting all flight legs from H2-C in increasing order of arrival times.  We 
denote the sorted list as 1 2g( ), g( ), ..., g(n).  We also sort the flight legs from hub H1 to 
hub H2 that depart later than PRT(p).  We denote this sorted list of flight legs as 

1 2f( ), f( ), ..., f(m).  Then, beginning with g(1), we look among all the flight legs 
1 2f( ), f( ), ..., f(m) for feasible connections with g(1).  (The set of feasible connections is 

illustrated in Figure 2-3.)  {f(1),g(1)}  is operationally feasible, f(1) has 7 available seats 
and g(1) has 10 available seats, hence {f(1),g(1)} enters CIL(p,H2) with 7 seats 
available.  Because the next itinerary {f(2),g(1)} is not feasible, all remaining 
itineraries with g(1) are not feasible.  The next step, then, is to consider flight leg g(2). 
Both {f(1),g(2)}  and {f(2),g(2)}  are feasible itineraries with available seats, and 
hence they are included in CIL(p,H2).  The same procedure is repeated to generate 
connecting itinerary lists for hub H3.  To generate 3-flight leg recovery itineraries, we 
build upon the 2-flight leg approach.  First, we build all feasible 2-flight leg itineraries 
from any hub to the destination, and then we expand these by adding any feasible 
leg from the location of the disruption to the origin of the 2-flight leg itinerary. 
Generation of recovery itineraries is terminated when the cumulative number of 
seats for the itineraries in CIL(p,H2) is at least as great as the number of disrupted 
type p passengers. 
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Figure 3-1 illustrates the generation process.  The sequence of arrows in the picture 
represents the order in which itineraries enter CIL(p,H2).   
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Figure 3-1: Example of connecting recovery itinerary generation 

 

3.1.3 Recovery itinerary assignment 
Recovery itinerary lists, DIL(p) and CIL(p,H), are merged for all hub airports and 

the aggregated list is sorted in order of increasing arrival time. The passengers in the 
recovery queue are then processed in order of increasing disruption time and 
assigned to the first recovery itinerary in the list with available seats.   For every 
assigned passenger, the number of available seats on each flight leg in the 
assigned itinerary is decremented by one.  
 
As shown in Table 3-2, the 15 disrupted type p passengers in this example are 
assigned to all seats on Recovery Itineraries (RI) 1 and 2 and to 5 of the 10 available 
seats on RI 3. 
 

Table 3-2: List of feasible recovery itineraries 

3.2 PDC assumptions 

Underlying PDC are assumptions that lead to approximations, usually 
underestimates, of actual passenger delays.  These assumptions are summarized as 
follows: 

RI# Path Number of 
seats 

Arrival delay 
(minutes) 

Number of 
passengers 
assigned 

1 H1-C 3 146 3 
2 H1-H2-C 7 386 7 
3 H1-H3-C 10 407 5 
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 Perfect information: we assume that at any point in time we know future 

operations exactly. Consequently, disrupted passengers assigned to 
recovery itineraries will not be disrupted again.  We also assume that the 
airline has perfect knowledge of the number of seats available for each 
flight.  In actuality, airlines do not know this information, as some passengers 
do not show-up for their flights.  For the major US airline we study, 15.4% of 
booked passengers are no-shows on average, with higher no-show rates for 
business passengers who often have fully refundable tickets.  

 
 Instantaneous information: we assume that a disrupted passenger is 

instantaneously rebooked on the recovery itinerary that provides at least 
the minimum connection time between the time of the disruption and the 
itinerary departure, and arrives earliest at the desired destination.  Because 
we do not know the disruption time of a canceled flight, we set its 
disruption time equal to its scheduled departure time.  

 
 No bumped passengers: when there are disrupted passengers who are 

severely delayed, we do not account for the possibility of recovering seats 
for them by bumping passengers, that is, by enticing non-disrupted 
passengers to fly later and give up their seats for the disrupted passengers.   

4 Delay analysis at a major hub-and-spoke airline 

In this section, we compute and compare passenger and aircraft delay statistics for 
a major US airline using the airline’s passenger reservation information and no-show 
rates for the month of August 2000.  The airline operates a hub-and-spoke network in 
which three hubs serve 74 airports in the domestic United States.  Typical of a hub-
and-spoke carrier, the passenger mix is 65% local and 35% connecting, with almost 
all passenger connections occurring at one of the three hub airports.   
 
Using the booking and no-show data covering 307,675 planned itineraries and 2.56 
million passengers for August 2000, we derived the average passenger demand, 
that is, the number of passengers showing up, for each flight leg.  Then, given 
operational delay and cancellation data from the ASQP database, we applied 
PDC to construct new itineraries for disrupted passengers, and to compute delay 
statistics for all passengers.  In computing these statistics, we assume the following 
within PDC: 
 

• Disrupted passengers are re-accommodated in increasing order of the time 
they are disrupted, that is, we employ the first-disrupted-first-recovered service 
policy. When a flight is canceled, the order in which we add the associated 
disrupted passengers to the disruption queue is random.  

 
• Although transfer times differ for each connecting passenger type at each 

airport because of differences in the distances between gates and 
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disembarking times, we set MCT to 10 minutes based upon a sensitivity analysis 
presented in Bratu [Brat03]. 

4.1 Passenger and flight statistics 

We limit our analysis to jet-operated flight legs (of which there are 33,730, with 303 
assigned jet aircraft) because the ASQP database includes only jet operated flight 
leg information.   For each itinerary j containing one or more flight legs operated by 
other than jet aircraft, we reduce the seat capacity of each jet-operated flight leg 
in j by the number of itinerary j passengers.  Passengers for whom we do not have all 
flight leg information are thus, assumed to be non-disrupted.   This assumption is 
supported by our analysis of the airline’s operations showing that fewer than 4% of 
the passengers are disrupted. 
 
Using ASQP and airline data for August 2000, we compare the average 
performance of major US airlines with the airline we study (referred to as our airline) 
in Table 4-1 (source: ASQP).  Compared to the major airlines in August 2000, our 
airline cancelled fewer flight legs, experienced shorter delays on average for 
operated flight legs, and achieved better on-time performance. 

 
 Our airline  

(August 2000) 
All major US airlines 
(2000 average) 

15 minutes On Time Performance (15OTP) 78.0% 73.6% 
Percentage of flights delayed by more than 45 minutes 11.7% 9.0% 
Average delay of operated flights (minutes) 9.0 10.5 
Percentage of canceled flights per day 2.2% 3.7% 

Table 4-1: Flight operations statistics for our airline versus industry average 

4.2 Discrepancy between passenger and flight delays 

Using ASQP and airline data as inputs to PDC, we conclude that flight leg delays 
severely underestimate passenger delays.  For August 2000, the average passenger 
delay of 25.6 minutes is 1.7 times greater than the average flight leg delay of 15.4 
minutes, as illustrated in Table 4-2. 
 

Table 4-2: Average passenger and flight delay, August 2000 

 
For the ten days in August 2000 with the lowest average flight leg delays and 
smallest number of canceled flights, we estimate the average passenger delay to 

 Average delay (minutes) 
All passengers 25.6 
Flight legs 15.4 
Ratio: passenger/flight leg delays 166% 
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be 1.6 times greater than the average flight leg delay of 15.4 minutes.  On these 
days, 85.7% of non-disrupted passengers arrive within one hour of their scheduled 
arrival time, experiencing an average delay of 16 minutes, close to the average 
flight leg delay.  Passengers disrupted by flight leg cancellations (causing 71% of the 
disruptions) or missed connections (causing the remaining 29%), however, 
experience an average delay of 303 minutes, accounting for 39% of all passenger 
delay minutes.   The significantly longer than average flight leg delays experienced 
by disrupted passengers underscore the inadequacy of conventional flight-based 
metrics, such as 15OTP, in measuring schedule performance as experienced by 
passengers.   

4.3 Passenger disruption analysis 

Recognizing the significance of disrupted passengers in understanding passenger 
delays and schedule performance, we further investigate characteristics that 
influence the degree of disruption and the effects of disruption. 

4.3.1 Connecting and local passengers 
As shown in Table 4-3, connecting passengers, scheduled to connect between 2 or 
more flights, are on average 2.8 times more likely to be disrupted than local 
passengers and 1.5 times more likely to be disrupted by a flight cancellation than 
local passengers. 

 

Table 4-3: Disruption risk for local and connecting passengers 

 
Consequently, while only 35% of passengers are connecting, they represent 49% of 
the disrupted passengers.  Among them, 52% are disrupted because of a flight 
cancellation and 48% because of a missed connection.  

4.3.2 Time of passenger disruptions 
In Figure 4-1, we depict average arrival delays in August 2000 for flight legs 
scheduled to arrive in each one-hour time window during the day at the airline’s 
major hub.  The average arrival delay, for example, of flight legs scheduled to arrive 
between 7:30 PM and 8:30 PM is 21 minutes.  (Note that 8 PM corresponds to 20 in 
the figure).  We observe that flight leg delays generally increase as the day 
progresses.  Moreover, the largest number of flight legs canceled per hour occurs 
between 6:30 PM and 7:30 PM, leaving limited time to re-accommodate the 
resulting group of disrupted passengers.   

Passenger group All Connecting (C) Local (L) %(C/L) 
Percent of disrupted passengers 3.20% 5.46% 1.97% 277% 
Percent of passengers on canceled flights 2.32% 2.95% 1.97% 150% 
Percent of passengers missing connections 0.88% 2.51%   
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Figure 4-1: Flight arrival delays and number of canceled flights per day for flights 

scheduled to arrive in each hour time window 

 
Growing delays as the day progresses and late-in-the-day cancellations provide an 
explanation for why half of the disrupted passengers are originally scheduled to 
arrive after 6 PM, and why the numbers of overnight passengers (those arriving at 
least one day late) increase each hour as the day progresses (Figure 4-2).  
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Figure 4-2: Number of disrupted passengers and percentage of overnight passengers per 

hour  

 
Figure 4-3 summarizes the average delay of disrupted passengers for selected 
groups where delays are in hours.  Early corresponds to before noon and late to 
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after 6PM.  Low frequency corresponds to less than 3 flights per day and high 
frequency to more than 8 flights per day. 
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Figure 4-3: Average delay in hours for different groups of disrupted passengers 

 
Clearly, low service frequency and disruptions late in the day contribute significantly 
to the delay of disrupted passengers. Consistent with these results, we plot average 
delay of disrupted passengers as:  1) frequency increases from the point of 
disruption to the passenger's destination (Figure 3-5, graph #1); and 2) disruption 
time changes (Figure 3-5, graph 2).  As indicated in the graphs, delay is more 
sensitive to disruption time than to route frequency. 
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Figure 4-4: Average delay of the disrupted passengers versus route frequency and time of 

disruption 

4.3.3 Seat availability 
Due to lack of seat availability, 31% of disrupted passengers are not re-
accommodated on their best itineraries (Table 3-5).  If the disruption is caused by a 
flight cancellation rather than a missed connection, the situation worsens, with just 
over half (55.3%) of the disrupted passengers re-accommodated on their best 
itineraries.  This occurs because each cancellation results in an average of 81.0 
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disrupted passengers, all competing for seats.  In contrast, only 3.4 passengers on 
average are disrupted per missed connection. 

 

Table 4-4: Statistics on disrupted passenger recovery itinerary 

 
We conduct an experiment in which we run PDC with all aircraft assumed to have 
unlimited capacity, the infinite capacity scenario.  We then contrast its solution, in 
which all passengers are re-accommodated on their best itineraries, with the PDC 
solution in which finite, actual aircraft capacities are specified.  We find that limited 
seat capacity most adversely affects local passengers, who are all disrupted by a 
flight leg cancellation and likely, have fewer efficient recovery itineraries than 
connecting passengers.  Moreover, from the infinite capacity scenario, we compute 
that 25% of the delays experienced by disrupted passengers are due to lack of seat 
availability and 75% to schedule design and airline operations.  

4.3.4 Flight schedule design  
The structure of the airline network and the scheduling of the flight legs are critical 
determinants of passenger disruption.  To illustrate, consider the airline we 
investigate in which at the largest hub airport, the airline schedules 10 complexes or 
banks.  A complex, or bank, is a set of arriving flight legs scheduled closely with a set 
of departing flight legs to allow passenger connections between arriving and 
departing flight legs.  If passengers have the same probability of being disrupted at 
all complexes, the percentage of overnight passengers should be about 10%, much 
less than the 22% calculated using PDC.  We believe this difference is due to 
propagation effects in the network.   A delayed or canceled flight leg causes 
downstream delays to aircraft, crews and passengers, resulting in growing numbers 
of flight delays and cancellations as the day progresses. 
 
Higher average flight leg delays and cancellations, however, do not always 
translate into longer delays for disrupted passengers.  As shown in Table 4-5, we 
compare two days of operation, denoted day 1 and day 2.  Day 1 has longer 
aircraft delays and more cancelled flight legs than day 2, but average delays for 
disrupted passenger are less on day 2 than on day 1. 

 

Day Average delay of disrupted 
passengers (minutes) 

Percent of flight 
legs canceled  

Average flight 
delay (minutes) 

1 495 1.0% 9.5 
2 334 8.1% 40.4 

Table 4-5: Illustration of the importance of disrupted itineraries 

 

 Percentage of All 
disrupted passengers 

Percentage of disrupted passengers caused by: 

Flight cancellations Missed connections 

Best itinerary 69.0% 55.3% 94.2% 
Other itineraries 31.0% 44.7% 5.8% 
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We explain this apparent contradiction through a simple example.  Consider an 
arriving complex with flight legs f(1) and f(2), and a departing complex with flight 
legs f(3) and f(4). Assume that one passenger plans to connect on each connecting 
pair of flight legs, that is, f1-f3, f1-f4, f2-f3 and f2-f4. We consider two flight delay 
scenarios, illustrated in Table 4-6, where delays are in minutes: 
 

 
Scenario 1 
Inbound flight leg Arrival delay Outbound flight leg Departure delay 

1f( )  0 3f( )  0 
2f( )  15 4f( )  15 

Scenario 2 
Inbound flight leg Arrival delay Outbound flight leg Departure delay 

1f( )  10 3f( )  10 
2f( )  10 4f( )  10 

Table 4-6: Flight delay scenarios 

 
Assume that disrupted passengers experience 4 hours of delay.  Although, the 
average flight delay for Scenario 1 is lower than for Scenario 2 (7.5 versus 10 
minutes), connecting passengers experience more than 6 times as much delay in 
Scenario 1 (64 minutes) than in Scenario 2 (10 minutes).  The difference results 
because the passenger on itinerary 2 3{f( ),f( )}  in Scenario 1 is disrupted, and none of 
the passengers in Scenario 2 is disrupted.   

 
Using PDC, we estimate that the number of misconnecting passengers in August 
2000 would have increased by 38.1% (12,362 passengers) had the flight legs 
departed on time from hub airports.  This hypothetical case is, of course, unrealistic 
but it nonetheless indicates that downstream departure delays can benefit 
connecting passengers.  We conclude that flight leg delay differences are better 
indicators of missed connections than flight leg delays alone.  

4.3.5 Load Factor Analysis 
The Average Load Factor ( AvLF ) is defined as the ratio of the total number of 
booked passengers to the total number of seats supplied in the schedule.   From 
1994 to 2000, the average load factor in the US airline industry increased noticeably 
due to: 

 A 4% per annum increase in passenger traffic, 
 A 1% per annum decrease in average seat capacity per flight leg 

(according to the US Department of Transportation Form 41 data), and 
 An increase in competition from 1996 to 2002 from the low cost carriers, 

whose market share increased from 12.6% to 17.1%, forcing yields down by 
9% and causing break-even load factors to increase during that period 
(source: Air Traffic Association). 
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In this section, we present results that quantify the impact of load factors and flight 
schedule disruptions on passenger delays.  We begin by generating a hypothetical 
demand scenario by multiplying the number of passengers on each itinerary by the 
same demand factor d.  Changing the value of d, we create additional demand 
scenarios.  Then, for each of these demand scenarios, we estimate passenger 
delays by solving PDC with August 2000 flight delay and cancellations data.  

 
In our base case, AvLF  is 40%, similar to the infinite capacity scenario described in 
Section 4.3.3, with almost all disrupted passengers recovered on their best itineraries.  
Re-running PDC for each demand scenario, we find that when loads increase, 
expected average delay of disrupted passengers increases exponentially, as 
illustrated in Figure 4-5. 
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Figure 4-5: Average delay of disrupted passengers versus average load factor 

 
When loads are low (that is less than 60%), a small number of disrupted passengers 
results and there are enough empty seats to re-accommodate most of them on 
their best itineraries.  When the average load factor increases, however, the number 
of disrupted passengers increases and fewer seats are left unoccupied.  As more 
disrupted passengers compete for fewer empty seats, the average delay increases 
rapidly.  For average load factors in excess of the average load factor in August 
2000 (73%), delays increase sharply.  As loads increase, there are more overnight 
passengers because there are no seats available to re-accommodate them the 
same day.  For low load factors, 80% of the disrupted passengers are recovered the 
same day, while for load factors between 90% and 95%, only 65% of the disrupted 
passengers are re-accommodated the same day. 
 
In Figure 4-6, we quantify the effects of load factors on the average delay 
experienced by passengers disrupted by:  1) flight cancellations; and 2) missed 
connections.  We observe that for low load factors, the cause of disruption does not 
impact the average delays experienced by passengers, and most disrupted 
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passengers are re-assigned to their best itineraries.  Passengers disrupted because of 
a flight cancellation become increasingly more difficult to re-accommodate as 
load factors increase, for the reasons previously discussed in Section 4.3.3.  Load 
factors, however, do not greatly affect the airline's ability to re-accommodate 
passengers who miss their connections due to a delayed flight. 
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Figure 4-6: Average delay of passengers disrupted because of flight cancellations or 

missed connections versus average load factor 

 
In Figure 4-7, we contrast the percentages of passengers re-accommodated on 
their best recovery itineraries for varying load factors when disruptions are caused 
by flight cancellations and missed connections.    
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Figure 4-7: Percentage of disrupted passengers re-assigned to their best recovery itinerary 

versus average load factor 

4.3.6 Disruption intensity 
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In this section, we present an analysis of the combined effects of higher levels of 
flight schedule disruption and average load factor on the average delay of 
disrupted passengers. 
 
We sort the days of August 2000 into two lists, L1 and L2, one list sorted in increasing 
order of the percentage of flights severely delayed and the second list in increasing 
order of the daily flight cancellation rate.  We assign a weight of 1 to each day in 
the top third of the lists, a weight of 2 to each day in the middle third and a weight 
of 3 to each day in the bottom third of lists L1 and L2.  We then average the two 
weights assigned to each day and sort the days in increasing order of their average 
weight.  The days in the first third of this sorted list form LD, the set of days with low 
levels of flight schedule disruptions.  The days in the next third of the sorted list form 
MD, the set of days with moderate levels of flight schedule disruptions, and the 
remaining days in the sorted list form the days with high levels of flight schedule 
disruptions (HD).  
 
Using PDC, we find that the expected delay of disrupted passengers for days in HD is 
double that for days in LD.  As depicted in Figure 4-8, for low average load factors, 
enough seats remain unoccupied to re-accommodate the relatively low number of 
disrupted passengers. 
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Figure 4-8: Average delay of the disrupted passengers for days with different disruption 

levels 

 
As the average load factor increases, fewer seats are available to re-
accommodate a growing number of disrupted passengers and the difference 
between delays for days in HD and LD widens.  Note that the difference between 
HD and LD grows more sharply for AvLFs greater than about 75%, which is close to 
the average Load factor for 2000.  Trends of increasing load factor (there were more 
days in which the load factor was above 85% in 2000 than in 1995), coupled with 
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increasing numbers of flight schedule disruptions, amplified the delays experienced 
by passengers in the late 90's. 

 
It is often the case in the service industry that quality of service deteriorates with 
increases in demand for service, with fewer resources available to correct service 
failures. The airline industry is not an exception and its ability to recover disrupted 
passengers deteriorates exponentially when the average load factor increases.  This 
problem is exacerbated by increasing competition from low cost airlines in the 
domestic US market, causing major carriers to strive for even higher average load 
factors to breakeven.  Passenger traffic in 2006 is forecasted to be about that of 
2000, [FAA03], with similar system capacity.  Hence, effectively managing passenger 
delays and schedule disruptions, critical to maintaining passenger loyalty and 
financial success, will be a major challenge for the airlines. 

5 Alternative flight-based delay metrics 

We suggest the following two alternative flight-based metrics, both designed to 
reflect the relative risk of passenger disruption and to allow ranking of airlines by 
schedule reliability:    

 The percentage of operated flights that are delayed by more than 45 
minutes (45FD) and, 

 The percentage of flights that are canceled. 
 
Like the 15OTP metric, our metrics rely only on readily available flight delay and 
cancellation information from the ASQP database. 

5.1 Percentage of operated flights delayed by more than 45 minutes     

In Table 5-1, we observe a clear shift in the distribution of delayed flights from 1995 to 
2000 (source: ASQP database). 

 

Table 5-1: Trends in flight delay distribution 

 
The percentage of flight legs with delays greater than 45 minutes increases from 
10.4% in 1995 to 18.2% in 2000.  This distribution shift from shorter to longer flight delays 
has a clear impact on connecting passengers, with flight legs delayed more than 45 
minutes accounting for 45% of the total delay minutes in 1995 and for 61% of total 
delay in 2000.   
 

 Flight delay window (minutes) 
Year ∈ ]0;15] ∈ ]15;45] 45>  

1995 64.2% 25.4% 10.4% 
2000 53.8% 28.0% 18.2% 
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Of the passengers with arrival delays in excess of 45 minutes, 68% missed their 
connections.  In contrast, for passengers with arrival delays in excess of 15 minutes, 
27% missed their connections.  Hence, the number of passengers disrupted In August 
2000 due to missed connections is much better correlated with 45FD ( 2 0 67=R . ) than 
with 15OTP ( 2 0 33= −R . ), with our least squares regression identifying the percentage 
of connecting passengers disrupted by missed connections as 0.92 multiplied by 
45FD.   

5.2 Percentage of flight legs canceled 

The percentage of flights canceled has also risen dramatically, from 0.6% in 1995 to 
3.5% in 2000, as illustrated in Table 5-2 (source: ASQP).  The combined effect of 
longer delays and more cancellations is a substantial rise in the number of disrupted 
passengers, resulting in increased passenger dissatisfaction and perceptions of 
degraded service reliability. 

 

Table 5-2: Trends in flight cancellation 

 
The number of passengers disrupted because of flight cancellation is very well 
correlated with the cancellation rate ( 2 0 98=R . ), with the least square regression 
equating the percentage of passengers disrupted due to a canceled flight to 1.11 
times the cancellation rate. 

6 Summary 

We summarize the key findings of our analysis as follows: 
 

 In general, flight leg delays are not accurate surrogates of passenger 
delays for hub-and-spoke airlines. Average flight leg arrival delay can 
severely underestimate the average arrival delay of passengers.  The chief 
contributor to this difference is passenger disruption, occurring when 
itineraries are disrupted by delayed flight leg arrivals and cancellations. 

 
 Connecting passengers are almost three times more likely to be disrupted 

than local passengers.  If connecting passengers miss their connections, 
however, they are often re-accommodated on their best itineraries. 
Alternatively, only about half of the local passengers, who are always 
disrupted by flight leg cancellations, are re-accommodated on their best 
itineraries.   

 Number of canceled flights Cancellation rate 
1995 23,841 0.6% 
2000 148,655 3.5% 
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 The inability to re-accommodate disrupted passengers on the best 
itineraries is exacerbated with increasing load factors, with average 
disrupted passenger delay growing exponentially with load factors. 

 
 Alternative metrics measuring schedule performance, namely flight 

cancellation rates and the percentage of flights delayed by more than 45 
minutes, are better indicators of passenger disruptions than 15OTP.   
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