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The Evolution of a Competence’s Market Specificity and the Emer-
gence of Advantage during a Technological Disruption 

 
 

I present an exploratory study to investigate the evolutionary path of a competence 

(rDNA/fermentation technology) during a technological discontinuity and its impact on the per-

formance heterogeneity across incumbents and both diversifying and de novo entrants. As such, 

this paper is based in detailed, direct industry observation, complemented with large-sample sec-

ondary data collection when necessary. Through such combination of industry observation and 

accompanying quantitative analysis, I find that this competence evolved with increasing market 

specificity. Such evolutionary path determined a significant part of performance heterogeneity 

during the technological disruption. Diversifying entrants outperformed incumbents only in the 

variant of the new technology that required rDNA/fermentation technology, that is, only in the 

variant with this particular evolutionary path. This case study supports the theoretical conclusion 

that incumbents do not necessarily fail to successfully execute R&D for all radically new tech-

nologies, as previously argued in studies of incumbents’ structural inertia. Incumbents in the pre-

sent case fail to execute the R&D of the new technology only for that variant in which they can-

not foresee the applicability to their own markets. That is, incumbents as organizations are dis-

tinctively subject to structural inertia in their R&D structure, and to inertia in the structure with 

which they monitor the environment. 

  

 

Key words: evolutionary perspective; organizational capabilities; incumbent; technological dis-

ruption; R&D; organizational change. 
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__________________________________________________________________________________ 

1.  Introduction 

As support has grown for the idea that heterogeneity in firm performance is not a transitory effect 

(Rumelt, 1991), the strategy field has looked deeper into the drivers of that performance heterogeneity.  

Emphasis has expanded ever more from cross-sectional research into “the longitudinal question” (Porter, 

1991), that is, an evolutionary, dynamic perspective (e.g., Nelson and Winter, 1982; Kogut and Zander, 

1992; Teece, Pisano and Shuen, 1997).  Indeed, current strategy research is starting to unpack the process 

of emergence of heterogeneity in firms’ endowments, a precursor of heterogeneity in firm performance 

(e.g., Helfat and Lieberman, 2002; Ahuja and Katila, 2004; Ethiraj, et al., 2005).  To that end, research 

about a firm’s ability to adapt to change has begun to move beyond the traditional interest in the inertial 

aspects of organizational structure (e.g., Hannan and Freeman, 1977).  Recent research is instead now 

looking into the question of appropriately designing a firm’s adaptability strategy depending on, for ex-

ample, the characteristics of the tasks in which the firm chooses to engage (Zollo and Winter, 2002).   

Mirroring the direction of mainstream strategy, the study of technological discontinuities has 

gradually expanded from attention to resource/competence destruction (e.g., Tushman and Anderson, 

1986) to evolutionary dynamics involving, for example, the emergence and effects of organizational iner-

tia on the fate of incumbents (e.g., Henderson and Clark, 1990; Henderson, 1993).  However, the study of 

technological change seems to lag advances in mainstream strategy research.  Whereas the latter keeps 

moving towards the origin and evolution of capabilities, the former has concentrated attention on the 

straightforward comparison of capabilities present vs. newly required.  Specifically, studies of techno-

logical change have focused on the impact on firm performance of differences in attributes between 

changes (e.g., radical vs. incremental [Henderson and Clark, 1990], disruptive vs. sustaining [Christensen, 

1997], core vs. periphery [Tushman and Murmann, 1998]), overlooking entirely the impact on perform-

ance generated by differences on the process through which those changes evolve.  Consequently, I look 

at the case of a radical technological change where the new technology comprises two variants that differ 
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in the evolutionary path they follow precisely because one variant makes use of a specific capability that 

the other variant does not require, where such capability evolved through a particular process.   

Specifically, I look at the market for anti-cancer drugs and its transition from cytotoxic to targeted 

drugs.  As a consequence of the biotechnology revolution this transition is a radical change in technologi-

cal paradigms (Henderson, Orsenigo and Pisano, 1999) and is competence-destroying to the incumbent 

firms (Rothaermel, 2001).  Among targeted (i.e., biotech-based) anti-cancer drugs, I look at two variants, 

namely small- vs. large-molecule drugs, which differ in their requirement of one technological capability: 

rDNA/fermentation techniques.  Given that rDNA/fermentation techniques evolved in a very distinctive 

path, the presence of this capability makes the evolution of large-molecule targeted anti-cancer drugs 

quite contrasting in comparison to that of their small-molecule counterparts.  It is in this comparison that I 

can distinguish two variants that are radical changes to the technological standard (i.e., cytotoxic drugs) 

but that differ in their evolutionary paths.  

With no a priori hypotheses about neither the specific nature of the difference in evolutionary 

paths nor the impact of that difference on firm performance, I design this study more as a theory-building 

exercise than a hypothesis test.  Nevertheless, my choice of combining qualitative and quantitative re-

search requires that quantitative analyses be performed following a simple hypothesis, which I state at the 

start of each section.   

In preliminary analyses, I show how the gradual decrease in market specificity (i.e., the gradual 

increase in the number of markets for which the technological capability is applicable) of one variant of 

the new technology led to differential timing of investment across firms.  This heterogeneity in invest-

ment resulted later in performance heterogeneity in several dimensions of R&D performance among in-

cumbents and both diversifying and de novo entrants.  But more importantly, the R&D performance of 

incumbents was different in each variant of the new technology.  Incumbents only fell behind in their 

R&D performance in the one variant that made use of rDNA/fermentation techniques, and such underper-

formance was tied to the evolutionary path followed by this set of techniques.    



Sosa – Evolution of a Competence 

5 

With this case study I aim at contributing to research in technological disruptions, and as such, to 

research in strategy formulation for markets with rapid change.  I show in preliminary analyses how the 

evolution of technological trajectories informs not only our understanding of diversification dynamics 

(e.g., Kim and Kogut, 1996) and of persistent within-market differences in R&D competence (e.g., Helfat, 

1994) but also our understanding of incumbents’ fate during technological discontinuities.  Furthermore, I 

show that the fate of incumbents during a technological discontinuity differed across variants of the radi-

cally new technology.  I argue that this difference is not the result of differences in the technologies but 

rather in the evolutionary paths of these technologies.  Whereas the stance of the new technology as radi-

cal change generated structural inertia among incumbents, it was the specific evolutionary path of one 

variant of the new technology that additionally generated cognitive inertia.  Only in the variant where 

both structural and cognitive inertia accumulated, did incumbents fall behind other firms in their R&D 

performance.  In this case, cognitive inertia arose in spite of the change in technologies being sustaining 

in customer preferences, contrary to what prior studies had shown (Christensen, 1997).   

More broadly, the finding that only the presence of both cognitive and structural inertia results in 

a lagging response from incumbents brings renewed attention to the proposition that research on organiza-

tional change requires attention to both the speed of learning mechanisms and the responsiveness of the 

structure to designed changes (Arrow, 1974; Hannan and Freeman, 1984; Williams and Mitchell, 2004).  

It is only when we pay attention to both factors that we get a full picture of environmental change and 

organizational adaptation. 

   

2.  The Origin of Performance Heterogeneity 

As scholars grow convinced that performance heterogeneity across firms competing in a market 

is a stable effect (e.g., Rumelt, 1991), and that this heterogeneity is in turn explained by heterogeneity in 

these firms’ resource endowments (e.g., Rumelt, 1984; Wernerfelt, 1984), interest moves to the source of 
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heterogeneity in resource endowments.  In other words, where do resources and capabilities/competences1 

come from?  One proposition is to think that firms exhibit differences in competitive advantage as they 

compete to acquire resources/competences in “strategic factor markets” (Barney, 1991).  A competing 

theory argues differences in capabilities stem not only from heterogeneity in access to assets but also in 

heterogeneity in the knowledge that the firm, as a community, accumulates over time (Kogut and Zander, 

1992).  In that sense, the counterargument is evolutionary.  A recent set of studies has begun looking into 

the origin of capabilities trying to distinguish idiosyncratic sources of heterogeneity in resource endow-

ments from measurable patterns.  Kim and Kogut (1996), for example, show how the evolutionary path 

that capabilities follow translates later into differences in diversification opportunities.  Ahuja and Katila 

(2004) show how the complex interconnection of different attributes in the context in which firms com-

pete give rise over time to differences in resources.  And Ethiraj et al. (2005) show differences in the 

characteristics of the tasks performed by a firm give rise to differences in the evolution of particular capa-

bilities that will impact firm performance in the future. 

 

3.  The Origin of Capabilities and Schumpeterian Capability Destruction 

In contrast, the study of technological discontinuities, that is, of Schumpeterian “creative destruc-

tion,” seems to have fallen behind.  Research in this area advanced considerably through the proposition 

to characterize technological disruption based on the extent to which it destroys the value of the compe-

tences that incumbents had originally mastered (Tushman and Anderson, 1986).  A similarly large step 

was taken when Henderson and Clark (1990) and Henderson (1993) argued that to explain the heteroge-

neous performance of incumbents and entrants, attention needed to be paid not only to the competences 

whose value was destroyed.  It in fact required attention to the ability of firms to adapt to that loss of 

value, and hence, to the heterogeneous presence of inertia among incumbents and entrants as a precursor 

of heterogeneous performance.  The literature then advanced mainly on the identification of drivers of 

                                                           
1 I use the terms “capabilities” and “competence” interchangeably, and link resources to their resulting competences 
following the definitions in Amit and Schoemaker (1993). 
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inertia or the exceptions to this rule (see Chesbrough, 2001, for a review).  Recently, a contrasting mecha-

nism has been brought to attention: the ability of one category of entrants (namely, diversifying entrants) 

to re-use previously acquired competences (e.g., Carroll, et al., 1996; Klepper and Simons, 2000).  This 

step therefore brings research in technological discontinuities closer to mainstream strategy.  As such, 

there is larger emphasis on the need for research in technological discontinuities to advance to the state of 

the most current studies in mainstream strategy, including most current evolutionary studies.  Clearly, 

strategy is beginning to shed light on the impact that the evolutionary path of competences has in result-

ing heterogeneity in firms’ endowments, and therefore in resulting heterogeneity in firm performance.  

Research in technological discontinuities needs to also pay attention to a more elaborate evolutionary per-

spective.  Creative destruction research needs to move beyond investigating the impact on heterogeneity 

in firm performance that the differences in the attributes across technological changes have.  Creative de-

struction research needs to also pay attention to the impact on heterogeneity in firm performance that the 

differences in the evolutionary paths that technological changes follow also represents throughout a tech-

nological discontinuity.  This is precisely the aim of the present study.  I therefore require the comparison 

of two changes with the same attributes but different evolutionary paths.  With this purpose in mind, I 

study two technological variants generated by the same radical change in technologies (therefore with the 

same attributes), where the variants differ in the evolutionary paths followed by the competences required 

to implement them.  Specifically, I study the anti-cancer drug market and its transition from standard 

chemotherapy into targeted drug development, a transition generated by the biotechnology revolution that 

is radical and competence-destroying for incumbents (Henderson, Orsenigo, and Pisano, 1999; Rothaer-

mel, 2001).  Among targeted anti-cancer drugs, I differentiate between two variants: small-molecule and 

large-molecule drugs.  These two variants differ only in that the latter makes use of a specific technologi-

cal competence, rDNA/fermentation techniques.  By following the evolution of rDNA/fermentation tech-

niques, I can understand the difference in evolutionary paths between small-molecule and large-molecule 

targeted anti-cancer drugs, and draw conclusions about the impact on performance heterogeneity due to 
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differences in evolution and not only to differences in attributes for the two variants of the technological 

change. 

With no a priori hypotheses about what the evolutionary path or its impact on firm performance 

would be, I design the present study as an exploratory endeavor.  Nonetheless, given my choice of com-

bining qualitative and quantitative methodologies, the latter require the statement of simple hypotheses to 

lead each quantitative analysis, which I provide at the start of each section, as I explain next. 

 

4.  Method 

4.1 The Setting and the Technological Discontinuity 

I choose as setting for this case study the market for anti-cancer drugs and its transition from cy-

totoxic agents (e.g., antineoplastic antibiotics, etc.) to the radically new category termed targeted drugs 

(e.g., tyrosine kinase inhibitors, etc.), a transition brought about by the biotechnology revolution.  This 

setting has many advantages, as prior research has shown (Sosa, 2007a), including the advantage that its 

high research intensity (PhRMA, 2003) and close connection between product quality and profitability 

(Lu and Comanor, 1998) bring to studies of R&D performance.  Furthermore, the biotechnology revolu-

tion as the discontinuity of choice had advantages as well, including a wealth of data sources and possible 

interviewees currently available.   

Within the biotechnology revolution and its impact on pharmaceuticals, I needed to choose a par-

ticular technological competence whose evolution I would follow.  According to Henderson, Orsenigo 

and Pisano (1999), the impact of the biotechnology revolution can be understood in two large sets: the 

generation of research and development (R&D) tools to discover new drugs, and the methods for drug 

mass-production.  In fact, a cornerstone in the biotechnology revolution has been the development of re-

combinant DNA (rDNA), a discovery that made possible for the first time the mass production of pro-

teins, also referred to as large-molecule drugs because they outweigh common drugs by a factor of 10.  

Innovations in rDNA/fermentation technology have been linked to the birth and growth of successful bio-

technology-based startups, such as Genentech, the original developer of rDNA technology, and Protein 
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Design Labs, the developer of the process to “humanize” engineered proteins.  I therefore chose this tech-

nological competence, rDNA/fermentation techniques, for the present study. As prior research has stated, 

R&D competences are dynamic capabilities and not static resources (Helfat, 1994; Teece, Pisano and 

Shuen, 1997; Helfat and Lieberman, 2002).   I therefore study rDNA/fermentation techniques, an R&D 

competence, as the set of innovations comprising not only the original discovery of recombinant DNA 

techniques (Cohen and Boyer, 1973, 1974) but also the many discoveries that followed, commonly re-

ferred to as fermentation or cell culture technology.   

As described in interviews, targeted anti-cancer drug development comprises two main variants: 

small-molecule and large-molecule drugs.  Although both variants of targeted anti-cancer drugs are radi-

cally different from standard chemotherapy in that targeted drugs are developed through a “science-

driven” approach, only large-molecule targeted drugs require rDNA/fermentation techniques for their 

production.  It is in this distinction that I can compare two variants of a technological change with the 

same attributes (i.e., radical and competence-destroying to incumbents) with different evolutionary paths 

(i.e., subjected or not to the evolutionary path of the R&D capability comprised by rDNA/fermentation 

techniques). 

I organize the analysis in this study in two stages.  Stage one is the qualitative theory-building 

portion, exploring what the differences in evolutionary paths were and how they mattered.  Stage two is 

the quantitative theory-testing portion of the study, where I test whether the differences in evolutionary 

paths had an impact on firm performance heterogeneity.  This second stage is theory-testing because it is 

designed to reject the null hypothesis that there exists no difference in performance given differences in 

evolutionary paths.  I present data sources and measures for both stages of the study next. 

 

4.2 Data Sources and Measures 

4.2.1 Qualitative Analysis   

I collected data through 45 interviews (with four interviewees contacted repeatedly) ranging be-

tween 30 and 90 minutes each, with a semi-structured interview guide that kept evolving as I gathered 
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further insight.  Interviewees included R&D managers in large and small pharmaceutical firms, industry 

analysts, and scientists both from industry and from academia.  I complemented that data with historical 

material collected from Walsh’s (2003) report of large-molecule drug development and customized 

searches in the PubMed database for historical background on specific drugs.  I also made use of the data 

in PJB Publications’ Pharmaprojects for selected information on the introduction of drugs into clinical 

trials over the period 1989-2004.  The analysis of this stage of the study is presented in section 5.1.   

 

4.2.2 Quantitative Analysis 

For stage two of the study, presented in section 5.2, I look into the possible impact of the evolu-

tionary path of rDNA/fermentation techniques on the performance heterogeneity of incumbents, diversi-

fying and de novo entrants competing in the anti-cancer drug market during the biotechnology discontinu-

ity.  In order to test whether differences in evolution led to differences in R&D performance, I first tested 

whether differences in evolution resulted in sustainable differences in the performance of research on 

rDNA/fermentation techniques.  After testing for these differences, I then proceeded to test whether these 

differences led to differences in the performance of large-molecule anti-cancer drug research and devel-

opment. 

Sample.  To construct the sample of firms, I started by identifying all anti-cancer drugs in clinical 

trials in the period 1989-2004 through PJB Publications’ database Pharmaprojects and then focused on 

the firms responsible for them.  In order to generate a sample that included firms with a clear intention to 

compete in the anti-cancer drug market, I matched the firms from Pharmaprojects to the firms reported in 

all available PhRMA surveys New Medicines in Development for Cancer (administered in 1988 and every 

two years from 1989 to 2003).  After excluding non-profit organizations, matching all cases to parent 

company names only, and adjusting for mergers and acquisitions and missing data, I identified the final 

sample, which comprises 165 firms (further detail of the sampling frame is given in Sosa, 2007a). 
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Dependent Variables.  Because I performed tests on the impact of differences in evolutionary 

paths of the two technological variants on two separate aspects of firm performance, I have two main de-

pendent variables. 

Competence in researching rDNA/fermentation techniques.  I estimated this R&D competence by 

measuring the rate of production of patented innovations in this area, as reported in Thomson Scientific’s 

Derwent World Patent Index.  I took all Derwent manual codes under the umbrella “Processes, Appara-

tus” and asked expert interviewees to perform the selection of relevant codes.  The resulting set of 4 spe-

cific Derwent manual codes paired with the 165 firms in the sample generated a dataset of 1,375 patented 

innovations.2  I then, based on these data, analyzed the rate of production of patented innovations through 

a Cox model following the design used previously in the literature (Sørensen and Stuart, 2000).  To do 

this, I used the earliest date of priority filing for the patented innovation as the time where the event took 

place.  I considered the start of the time at risk to be either January 1st of the first year in the dataset 

(1979) or of the year of founding for the firm, whichever was latest, in the case of the firm’s first patented 

innovation.  All subsequent cases were set starting as the day immediately after the previous event occur-

rence.  I ran a second set of regressions taking into account the total number of forward citations that the 

set of patents tied to each innovation generated.  I incorporated this measure in Cox regressions by using 

the total number of forward citations as frequency weights, that is, by duplicating records by as many for-

ward citations they had.  This implies the second set of regressions is then predicting rather the rate of 

production of forward citations in this area.  

Competence in Targeted Anti-Cancer Drug Development.  In order to test for differences in com-

petence in the research and development of targeted anti-cancer drugs, I identified when each drug en-

tered and exited clinical trials as reported in Pharmaprojects.  I distinguished whether the drug was ulti-

mately approved, discontinued or right-censored and analyzed the data through Cox regression focusing 

on the approval event, treating discontinuations and right-censored cases as right-censored (although al-

ternative specifications for the discontinued records did not alter results).   
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Independent Variables.  The principal interest was to distinguish whether performance advan-

tages accrued to some categories of firms in particular, and whether there was a difference between the 

two variants of the new technology that differed on the basis of their use of rDNA/fermentation tech-

niques.  Therefore, the following binary variables were constructed. 

Small- vs. Large-Molecule Targeted Drugs.  I classified targeted anti-cancer drugs as large- vs. 

small-molecule drugs through the information in the Pharmaprojects database.  For large-molecule drugs, 

this information is directly provided in the database.  For small-molecule drugs, I matched the mechanism 

of action reported in Pharmaprojects to the mechanisms of action described in industry reports (e.g., Bear 

Sterns, 2002; Stephens Inc., 2002; UBS Warburg, 2001) as targeted (in the end, mainly comprising an-

giogenesis and kinase inhibitors).  I then generated a dummy variable “Large-Molecule” to distinguish 

these two classes of drugs. 

Firm Categories.  I distinguished among incumbents, diversifying and de novo entrants based on 

whether a firm had been present in the anti-cancer drug market prior to the start of the biotechnology 

revolution in that market (i.e., 1983), and if not, whether it had been operating in any market prior to its 

incursion into anti-cancer drug development.  The decision tree and data sources used to classify all firms 

in anti-cancer drug market incumbents, diversifying or de novo entrants are presented in Figure 1.  Fur-

ther detail is available in Sosa (2007a). 

rDNA Pioneers.  As will be shown in section 5.1, the evolutionary path of rDNA/fermentation 

techniques did lead to differences in timing of investment across firms.  Because the anti-cancer drug 

market is one of the last markets to be reached by rDNA/fermentation techniques and their resulting 

large-molecule drugs (due to the complexity of this R&D capability), I took the date that large-molecule 

drugs entered clinical trials with a clear anti-cancer application, namely 1995 (as reported in Colwell, 

2002) as the cut-off date to identify rDNA pioneers.  I then used Walsh’s (2003) report to identify all 

large-molecule drugs approved up to 1994 irrespective of market application, and then combined that in-

formation with information on Pharmaprojects to pinpoint the developing firms for those drugs.  I classi-

                                                                                                                                                                                           
2 Derwent World Patent Index is constructed around innovations, and not patents.  Therefore, each record represents 



Sosa – Evolution of a Competence 

13 

fied as an rDNA pioneer a firm that had a large-molecule drug approved in 1994 or before, irrespective of 

market application, and that was the first one in its active ingredient.  The identification of these rDNA 

pioneering firms is shown in Table 1. 

 
 

Insert Table 1 
 

 

Control Variables.  In all analyses using Cox regression, I control for the cumulative introduc-

tion (of patented innovations or drugs in clinical trials, for the different sets of regressions).  In analyses 

of drug approval, I controlled for the novelty of the drug through the variable “drug novelty,” defined as 

the natural logarithm of the inverse of the chronological place of introduction that the drug holds on the 

list of drugs within the same mechanism of action (a replica of the measure included in Guedj and Scharf-

stein, 2004).  In analyses of drug approval, I also controlled for the presence of an R&D alliance through 

a dummy variable with value 1 if the drug had an R&D alliance associated with it reported in the cancer 

sub-section of the Windhover’s Pharmaceutical Strategic Alliances collection 1986-2003.3  Because prior 

research (Sosa, 2007a) has shown that in this market the cross-firm category acquisition of drugs is ex-

tremely low and more frequently present in de novo firms than either diversifying entrants or incumbents, 

the lack of acquisition controls is not a concern.  Lastly, in analyses of drug approval I also distinguished 

diversifying entrants that had prior oncology research from those who did not in accordance to prior re-

search in this market (Sosa, 2007b).  In Cox regressions for rate of production of patented innovations 

weighted by forward citations I also controlled for the number of different patents applied for per innova-

tion, since this number could artificially increase the number of forward citations. 

 

 

                                                                                                                                                                                           
a unique innovation that matches to several patents, depending on the behavior of the patenting firm. 
3 Although projects could also be outsourced, at least in their clinical trial component, in pharmaceuticals, the level 
of outsourcing in cancer is extremely low, second-to-last after ophthalmology, with a mean outsourcing level of 
10.3% in the period 1995-1999, and even lower levels in the years preceding 1995 (Azoulay, 2004). 



Sosa – Evolution of a Competence 

14 

5. Analysis and Results 

5.1 The Evolution of rDNA/Fermentation Techniques 

As mentioned, rDNA/fermentation techniques have made possible the mass-production of one 

variant of biotechnology-based drugs: large-molecule drugs.  For instance, interferon alpha-2, the active 

ingredient in Intron A® (the newly approved, large-molecule targeted anti-cancer drug), is a cytokine 

naturally produced in the human body in small quantities (Walsh, 2003).  rDNA/fermentation techniques 

made it possible to produce interferon alpha-2 in therapeutically and hence commercially feasible 

amounts.  In fact, interviewees report innovations in rDNA/fermentation techniques evolved through a 

series of phases, that as I will argue in this section, decreased in market specificity (i.e., increased in the 

scope of markets to which they were applicable [Montgomery and Wernerfelt, 1988]).   

rDNA/fermentation innovations were first developed to mass-produce proteins (i.e., large-

molecule drugs) occurring naturally in the human body.  The characterization of such proteins had been 

performed in academic research and was publicly available.  Several of the first large-molecule drugs to 

reach the market were used in the treatment of enzyme deficiencies (e.g., diabetes mellitus), diseases in 

which not only the protein but also its therapeutic value (i.e., its connection to disease treatment) were 

common knowledge in the scientific community.  In these initial markets, firms were competing in terms 

of competence in process design alone.  This comprises phase I in the evolution of rDNA/fermentation 

technology.   

A case in point is insulin, the first product for which the radically new rDNA/fermentation tech-

nology processes were commercially used.  Insulin’s principal therapeutic value is the treatment of diabe-

tes mellitus, a disease in which patients lack natural insulin production.  The enzyme received the name 

“insulin” in 1909, but it was not until 1921-1922 that researchers at the University of Toronto isolated the 

enzyme and proved its effect in regulating sugar metabolism (Rosenfeld, 2002).  By the time Genentech 

invested in rDNA/fermentation technology process innovations for mass-production of “artificial” insulin 

to be commercialized by Eli Lilly and Co. (Christensen, 1996), the enzyme had been in commercial pro-
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duction by semi-synthetic processes since 1923 (when Eli Lilly and Co. achieved successful yield and 

standardization of the first mass-production method). 

It was not until later, as rDNA/fermentation techniques evolved, that gradually other known en-

zymes for which no connection to disease treatment was known began to be researched in-depth.  This is 

then phase II of the evolution of rDNA/fermentation techniques.  A case in point is that of erythropoietin, 

commonly referred to as Epo, an enzyme today commercially available as Amgen’s best-selling large-

molecule drug for anemia treatment, Epogen®.  According to scientist J.W. Fisher’s (1998) own account 

of his and others’ breakthrough research in “the quest for erythropoietin,” one of the most important aca-

demic papers confirming the existence of Epo was published in 1950, however:  

“until the gene for Epo was cloned by Lin et al. [1985] at Amgen and Jacobs et al. 

[1985], Epo was [erroneously] thought to be produced in the glomerular epithelial cells.  

The ability to clone made it possible [to determine Epo’s appropriate source and thera-

peutic value]” (p. 10). 

As the rDNA/fermentation techniques developed, the therapeutic potential of large-molecule 

drugs grew in relevance and ultimately a new product class emerged.  This new product class comprises 

phase III in the evolution of this technological competence.  The pharmaceutical industry is currently in 

phase III, and large-molecule drugs that enter clinical trials go beyond those naturally occurring in the 

human body, to include as well laboratory-designed drugs.   Clearly, the development of the latter re-

quires investment in terms of both manufacturing process and product design and includes markets with 

higher profitability prospects (e.g., anti-cancer drugs).  A case in point in phase III is Herceptin®, the new 

targeted anti-cancer large-molecule drug designed by Genentech targeting Her-2 expressing aggressive 

breast cancers (Bazell, 1998). 

Interviewees coincided in the description of the historical progression of the R&D of large-

molecule drugs in the three phases described above: (I) a class of known proteins with known connections 

to disease treatment (e.g., insulin); (II) a class of known proteins with unknown connections to disease 

treatment (e.g., Epo); (III) a newly born class of engineered proteins (e.g., Herceptin®).  In fact, large-
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molecule drugs currently available in the market can be classified into the three categories mentioned 

above.  The resulting three broad classes are shown in Table 2.   

 
 

Insert Table 2 
 

 

Based on this classification and the list of all large-molecule drugs approved in the USA up to 

2003 as reported in Walsh (2003), I constructed Figure 2 to illustrate the evolution of the three phases. 

 
 

Insert Figure 2 
 

 

The basic definition of a market in economic theory is a set of products that are substitutes for 

one another.  Consequently, each disease treatment is, in rough terms, a stand-alone market.  What the 

three-phase progression of the applicability of rDNA/fermentation techniques implies for our understand-

ing of the evolution of this competence is that the competence widened its market specificity over time.  

This temporal difference in market specificity could have had an impact on heterogeneity in some area of 

firm performance, and I investigate this aspect next. 

 

5.2 The Impact of Differences in Evolutionary Path on Differences in Firm Performance 

5.2.1  The Emergence of a “Competence-Based” First Mover Advantage 

The increase over time in the number of markets for which rDNA/fermentation techniques were 

applicable could have generated heterogeneity in investment in this technological competence, which 

would then lead to differences in the competence to research further rDNA/fermentation techniques.  This 

is therefore the hypothesis to test in this section: whether rDNA pioneers had a sustained advantage in the 

competence to research rDNA/fermentation techniques.  Table 3 offers descriptive statistics and Table 4 
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offers the Cox model results for regressions predicting the rate of production of patented innovations in 

the rDNA/fermentation area in the period 1979-2004.   

 
Insert Table 3 

 
 

 
Insert Table 4 

 
 
Notice rDNA pioneers have an advantage (model 3) and their advantage is larger than that of in-

cumbents (test of coefficients being equal is rejected at p < 0.03).  The baseline in models 1 and 2 is di-

versifying entrants (the omitted category) and in both cases de novo firms incur a disadvantage in com-

parison (their hazard rates are < 1 in both models).  In model 3, the baseline (the omitted category in this 

case) is diversifying entrants that are not rDNA pioneers and de novo firms are still at a significant disad-

vantage (their hazard rate is still < 1).  This analysis implies that pioneers in the area of 

rDNA/fermentation techniques accrued an advantage in that R&D capability that persisted until at least 

2004, the year of end of observation. 

Because not all innovations are of equal importance, I try to control for such differences by creat-

ing frequency weights based on the forward citations of the patents tied to each innovation.  Table 5 pre-

sents descriptive statistics whereas Table 6 presents results of the Cox regressions with frequency 

weights.  Prior conclusions do not change: rDNA pioneers accrued a sustained advantage in the perform-

ance of research in rDNA/fermentation techniques.  

 
 

Insert Table 5 
 

 
 

Insert Table 6 
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5.2.2  Impact on Heterogeneity in R&D Performance 

So far, I have offered evidence supporting the result that the evolution of rDNA/fermentation 

techniques with its gradual decrease on market specificity translated into temporal heterogeneity in in-

vestment in this technological competence, and more importantly, into a sustained advantage in the per-

formance of subsequent research in rDNA/fermentation techniques.  In this section, I look for evidence 

that the sustained advantage in the research of rDNA/fermentation techniques tested in section 5.2.1 re-

sulted in an advantage on the research and development of large-molecule targeted anti-cancer drugs, but 

not on that of small-molecule targeted anti-cancer drugs.  Whereas prior research found incumbents had 

an absolute advantage in the research and development of all targeted anti-cancer drugs, in this section I 

hypothesize that for the sub-set of targeted anti-cancer drugs that are large molecules, rDNA pioneers 

would have the largest advantage.  I perform this test using Cox regressions predicting whether and when 

the approval of a drug takes place.  In order to gain statistical power, I split the sample of targeted anti-

cancer drugs into the sub-sample of small-molecule and that of large-molecule drugs.  Tables 7 and 8 pre-

sent descriptive statistics and correlation matrices for small-molecule and large-molecule targeted anti-

cancer drugs, respectively, whereas Tables 9 and 10 present their corresponding Cox models, in the same 

order.   

 
 

Insert Table 7 
 

 
 

Insert Table 8 
 

 
 

Insert Table 9 
 

 
 

Insert Table 10 
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Although the small-molecule drug sub-sample is rather small to support statistical significance in 

any of its models (even though the stratification in this case adds statistical power), coefficients are of the 

expected direction: incumbents’ coefficient is > 1 and larger than that of rDNA pioneers. 

More importantly, the sample for large-molecule drugs does achieve statistical significance.  

Model 3 in Table 10 shows rDNA pioneers have a significant, > 1 hazard rate, outperforming incumbents 

and indeed other firm categories.  In model 4, Table 10, I try to control for the presence of prior oncology 

research, a variable shown in previous research (Sosa, 2007b) to determine competence in preclinical de-

sign of anti-cancer drugs, a preceding step to the launch of an anti-cancer drug in clinical trials, but the 

sample is too small to distinguish the effects.  As seen in Table 10, firms that either had prior oncology 

research, or were rDNA pioneers, or both, all had an advantage in the research of large-molecule targeted 

anti-cancer drugs, but the relative magnitudes of their comparative advantages cannot be assessed (the 

pair-wise comparison of the three coefficients all fail to reject the null hypotheses).     

 

6.  Discussion 

In this paper, motivated by recent research in the origin of capabilities as a driver of performance 

heterogeneity, I asked whether we could better understand performance heterogeneity during a techno-

logical discontinuity, if we were to explore not only the new competences required by the radically new 

technology but also the evolutionary path followed by those capabilities.  I looked at one technological 

competence, rDNA/fermentation techniques.  As I explored its evolutionary path, I found preliminary 

evidence that the market specificity of this competence decreased over time (i.e., its market coverage in-

creased).  Such temporal difference in market specificity generated temporal heterogeneity in investment 

across firms interested in pharmaceuticals.  This heterogeneous investment then cascaded into differences 

in market-level competition.  In the one downstream market I measured, the anti-cancer drug market, I 

found preliminary evidence that diversifying entrants pioneers in rDNA/fermentation techniques accrued 

a competitive advantage.  They outperformed in the generation of subsequent rDNA/fermentation innova-
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tions and in the overall R&D performance of the one variant of the radically new technology that made 

use of rDNA/fermentation techniques (namely, large-molecule targeted anti-cancer drugs). 

Although the question can be raised as to whether incumbents rationally waited to invest late in 

rDNA/fermentation techniques, as opposed to their delay representing a lagged response, the disadvan-

tage that these firms are incurring in R&D performance suggests otherwise.  Indeed, in interviews with 

R&D managers in incumbent firms, they recognized they were unintentionally late in investing in 

rDNA/fermentation techniques and were later forced to catch up.  Accounts in the public press support as 

well this statement (e.g., Drews, 1993). 

With this case study, I hope to contribute to the literature on technological disruption.  I show 

how the “technological trajectory” that a competence follows has an impact in our understanding not only 

of diversification dynamics (Kim and Kogut, 1996) but also of the dynamics of technological discontinui-

ties.  In the present case, changes in market specificity made a difference in the investment patterns of 

different firms, and differences in investment patterns in turn translated in downstream performance het-

erogeneity.  A main takeaway of this paper is to distinguish how incumbents were not generally underper-

forming in the R&D of the new technology as the traditional literature had predicted based on structural 

inertia arguments (e.g., Henderson, 1993).  Incumbents only fell behind in the variant of the radically new 

technology for which it was unclear initially whether the application of the additional technological com-

petences would affect the market where the incumbents held the leadership.  That is, incumbents only fell 

behind in the variant of the new technology where both cognitive and structural inertia were combined.  

Furthermore, the process that led to lack of foresight for incumbents in this case did not involve a change 

in customer tastes as has been argued before in the literature (Christensen, 1997; Tripsas, 2006).  In this 

case, the change is radical in technologies but sustaining in customer tastes, and incumbents still lacked 

foresight due to the particular evolutionary path that the one technological variant followed.   

In that sense, we return to the question of what determines the ability of organizations to adapt to 

environmental changes.  Hannan and Freeman (1989) highlighted the need to understand both the speed 

of learning mechanisms and the responsiveness of the organizational structure to designed changes.  It is 
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only when both, cognitive and structural inertia are considered that we can understand the adaptation abil-

ity of incumbents to a technological change and to organizations in general.     
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Tables 
Table 1 

Pre-1995 USA Approvals of rDNA/Fermentation Technology-based Products and their Developing Firms 
 

Year* Brand 
Name* 

Active    
Ingredient 

Indication  
(Market)* 

Commercializing 
Firm* 

Developing 
Firm** 

rDNA 
Pioneer

1982 Humulin Insulin Diabetes  
mellitus Eli Lilly Genentech  

1985 Protropin Human growth  
hormone (hGH)    

hGH deficiency in 
children Genentech Genentech  

1986 Intron A Interferon alpha 2 Cancer, genital warts, 
hepatitis Schering Plough Biogen  

1986 Roferon A Interferon alpha 2 Hairy cell  
leukemia Hoffman-La Roche Genentech  

1986 Recombivax Hepatitis B virus 
surface antigen Hepatitis B vaccine Merck   

1986 Orthoclone 
OKT3 

Muromomab 
CD3 

Reversal of acute kid-
ney transplant  rejection 

Ortho Biotech  
(Johnson & Johnson) 

Ortho Biotech  
(Johnson & John-
son) 

 

1987 Activase 
Tissue  

plasminogen 
activator (tPA) 

Acute  
myocardial infarction Genentech Genentech  

1987 Humatrope hGH hGH deficiency in 
children Eli Lilly Eli Lilly  

1989 Epogen Epoetin alpha Anemia Amgen Amgen  

1990 Procrit Epoetin alpha Cancer-related anemia Ortho Biotech    
(Johnson & Johnson) Amgen  

1990 Actimmune Interferon  
gamma 1 

Chronic  
granulomatous disease Genentech Genentech  

1991 Novolin Insulin Diabetes  
mellitus Novo Nordisk Novo Nordisk  

1991 Leukine 

Granulocyte 
macrophage 

colony-
stimulating factor  

(GM-CSF) 

Autologous bone  
marrow transplantation 

Amgen and Schering 
AG Immunex1  

1991 Neupogen Filgrastim Chemotherapy-induced  
neutropenia Amgen Amgen  

1992 Recombinate Factor VIII Hemophilia A Baxter / Wyeth Genetics Institute2  
1992 Proleukin Interleukin 2 Renal cell  

carcinoma Chiron Chiron  

1992 OncoScint 
CR/OV 

Satumomab 
pendetide 

Detection/staging, colo-
rectal and ovarian  

cancers 
Cytogen Cytogen  

1993 Bioclate Factor VIII Hemophilia A Centeon Genetics Institute  
1993 Kogenate Factor VIII, 2nd 

generation Hemophilia A Bayer Bayer  

1993 Betaseron Interferon beta 1 Relapsing  multiple  
sclerosis 

Berlex laboratories and 
Chiron Chiron  

1993 Pulmozyme Dornase alpha Cystic fibrosis Genentech Genentech  
1994 Nutropin hGH, 2nd genera-

tion 
hGH deficiency in 

children Genentech Genentech  

1994 ReoPro Abciximab Prevention of blood 
clots Centocor State University, 

NY  

1994 Cerezyme Beta glucocere-
brosidase Gaucher’s disease Genzyme Genzyme  

 
Sources: 
  *   Walsh (2003) 
 **  Pharmaprojects 
*** Analysis in this study  

Notes: 
1 Wyeth acquired a majority interest in Genetics Institute in 1992, fully acquiring the 
firm in 1995 (http://www.wyeth.com/aboutwyeth/history visited on June 5, 2007). 
2 Amgen acquired Immunex in 2002 (http://www.amgen.com/about/acquisitions.html 
visited on June 6, 2007). 
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Table 2 

Classes of Large-Molecule Drugs  
that Evolved Chronologically into a New Product Class 

 
Phase I  

protein and connection to 
disease known 

Phase II 
only protein known 

Phase III 
new product class 

Insulin Epo 
Factor VIII Interferons 

Human Growth Hormone 
Glucocerebrosidase 

Interleukins 
Monoclonal-Antibody-based 

products 
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Table 3 
Competence in rDNA/Fermentation Technology 

Descriptive Statistics and Correlation Matrix for Patenting Rate Analysis 
(1,452 Spells, 1,375 Events) 

 
 Count Mean Std.Dev. Min. Max. 

(1) Incumbent 329     
(2) De Novo 252     
(3) rDNA Pioneer 450     
(4) De Novo, no rDNA Pioneer 245     
(5) Cumulative  319 247 0 846 

 
 (1) (2) (3) (4) (5) 

(1) Incumbent 1     
(2) De Novo -0.25 1    
(3) rDNA Pioneer -0.36 -0.28 1   
(4) De Novo, no rDNA Pioneer -0.24 0.98 -0.30 1  
(4) Cumulative -0.34 -0.37 0.15 -0.36 1 
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Table 4 
Competence in rDNA/Fermentation Technology 

Cox Model Analysis of Patenting Rate 
(1,452 Spells, 1,375 Events) 

All Coefficients in Hazard Rates 
 

 Model 1 Model 2 Model 3  

Incumbent 0.99 
(0.05) 

1.16* 
(0.08) 

1.79*** 
(0.15) 

 

De Novo 0.40*** 
(0.03) 

0.47*** 
(0.04) 

  

rDNA Pioneer   2.13*** 
(0.17) 

 

De Novo, no rDNA Pioneer   0.71*** 
(0.07) 

 

Cumulative  1.00*** 
(0.00) 

1.00*** 
(0.00) 

 

Log Likelihood -8,660 -8,648 -8,595  
+ p < 0.1, * p < .05, ** p < .01, *** p < .001   
Standard errors in parentheses.   

 

≠ coefficients 
p < 0.03 
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Table 5 
Competence in rDNA/Fermentation Technology 

Descriptive Statistics and Correlation Matrix for Weighted Patenting Rate Analysis 
(4,947 Spells, 4,870 Events) 

 
 Count Mean Std.Dev. Min. Max. 

(1) Incumbent 1,411     
(2) De Novo 955     
(3) rDNA Pioneer 1,323     
(4) De Novo, no rDNA Pioneer 903     
(5) Cumulative  764 514 0 1,710 
(6) Number of Patents per Innovation  9.3 8.3 0 60 

 
 (1) (2) (3) (4) (5) (6) 

(1) Incumbent 1      
(2) De Novo -0.31 1     
(3) rDNA Pioneer -0.38 -0.24 1    
(4) De Novo, no rDNA Pioneer -0.30 0.97 -0.29 1   
(5) Cumulative -0.22 -0.34 0.28 -0.33 1  
(6) Number of Patents per Innovation 0.19 -0.05 0.01 -0.11 -0.38 1 
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Table 6 
Competence in rDNA/Fermentation Technology 

Cox Model Analysis of Patenting Rate with FW Citations as Frequency Weights 
(Rate of FW Citation Production) 

(4,947 Spells, 4,870 Events) 
All Coefficients in Hazard Rates 

 
 Model 1 Model 2 Model 3  

Incumbent 0.90** 
(0.03) 

1.36*** 
(1.01) 

2.04*** 
(0.10) 

 

De Novo 0.60*** 
(0.02) 

1.00 
(0.04) 

  

rDNA Pioneer   2.21*** 
(0.11) 

 

De Novo, no rDNA Pioneer   1.58*** 
(0.08) 

 

Cumulative  1.00*** 
(0.00) 

1.00*** 
(0.00) 

 

Number of Patents per Innovation   0.99** 
(0.00) 

 

Log Likelihood -36,684 -36,016 -35,827  
+ p < 0.1, * p < .05, ** p < .01, *** p < .001   
Standard errors in parentheses.   

 

 

 

 
 
 

≠ coefficients 
p < 0.07 
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Table 7 
Overall R&D Competence 

Descriptive Statistics and Correlation Matrix 
Only Targeted Small-Molecule Drugs 

(N = 353) 
 

 Count Mean Std.Dev. Min. Max. 
(1) Incumbent 115     
(2) Diversifying 142     
(3) rDNA Pioneer 31     
(4) Diversifying, no rDNA Pioneer 112     
(5) Cumulative  467 237 5 918 
(6) Drug Novelty  -1.68 1.16 -4.16 0 
(7) R&D Alliance 2     

 
 (1) (2) (3) (4) (5) (6) (7) 

(1) Incumbent 1       
(2) Diversifying -0.57 1      
(3) rDNA Pioneer -0.22 0.36 1     
(4) Diversifying, no rDNA Pioneer -0.47 0.83 -0.21 1    
(5) Cumulative -0.47 0.25 0.17 0.16 1   
(6) Drug Novelty -0.06 -0.06 -0.00 -0.07 0.56 1  
(7) R&D Alliance -0.05 -0.06 -0.02 -0.05 -0.09 -0.01 1 
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Table 8 
Overall R&D Competence 

Descriptive Statistics and Correlation Matrix 
Only Targeted Large-Molecule Drugs 

(N = 638) 
 

 Count Mean Std.Dev. Min. Max. 
(1) Incumbent 47     
(2) Diversifying 212     
(3) rDNA Pioneer 73     
(4) Diversifying, no rDNA Pioneer 152     
(5) Cumulative  476 238 6 914 
(6) Drug Novelty  -2.55 1.71 -5.3 0 
(7) R&D Alliance 14     

 
 (1) (2) (3) (4) (5) (6) (7) 

(1) Incumbent 1       
(2) Diversifying -0.20 1      
(3) rDNA Pioneer -0.10 0.37 1     
(4) Diversifying, no rDNA Pioneer -0.16 0.79 -0.20 1    
(5) Cumulative -0.22 0.11 0.02 0.11 1   
(6) Drug Novelty 0.10 0.12 0.09 0.08 0.14 1  
(7) R&D Alliance -0.00 -0.04 -0.05 -0.01 -0.10 -0.02 1 
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Table 9 

Overall R&D Competence 
Cox Model Analysis of Drug Approval  

(353 Spells, 7 Events) 
Only Targeted Small Molecules 
All Coefficients in Hazard Rates 

 
 Model 1 Model 2 Model 3 

Incumbent 3.74 
(4.26) 

4.31 
(4.68) 

4.37 
(4.69) 

Diversifying 3.60 
(4.01) 

3.00 
(3.87)  

rDNA Pioneer   0.00 
(0.00) 

Diversifying, no rDNA Pioneer   3.44 
(4.38) 

Cumulative Introduction  1.00 
(0.00) 

1.00 
(0.00) 

Drug Novelty  1.43 
(0.47) 

1.41 
(0.48) 

R&D Alliance  0.00 
(0.00) 

0.00 
(0.00) 

Log Likelihood -28.7 -27.7 -27.3 
+ p < 0.1, * p < .05, ** p < .01, *** p < .001  
Standard errors in parentheses.   
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Table 10 

Overall R&D Competence 
Cox Model Analysis of Drug Approval  

(638 Spells, 15 Events) 
Only Targeted Large Molecules 
All Coefficients in Hazard Rates 

 
 Model 1 Model 2 Model 3 Model 4  

Incumbent 3.05 
(3.34) 

2.26 
(2.37) 

4.37 
(4.94) 

4.41 
(5.04)  

Diversifying 3.91* 
(2.22) 

4.01* 
(2.50)    

rDNA Pioneers   14.47*** 
(9.54)   

rDNA Pioneers,  
With prior oncology research    8.60+ 

(10.72) 
 

rDNA Pioneers,  
No prior oncology research    16.40*** 

(10.87) 
 

Diversifying, no rDNA Pioneer   3.57 
(3.02)   

Diversifying,  
No rDNA Pioneer, 
With prior oncology research 

   7.78* 
(7.43)  

Diversifying,  
No rDNA Pioneer, 
No prior oncology research 

   1.64 
(1.86)  

Cumulative Introduction  0.99 
(0.00) 

1.00 
(0.00) 

1.00 
(0.00)  

Drug Novelty  1.28+ 
(0.16) 

1.11 
(0.15) 

1.12 
(0.16)  

R&D Alliance  2.69 
(2.96) 

4.23 
(4.98) 

4.86 
(5.84)  

Log Likelihood -64 -62 -57 -56.7  
+ p < 0.1, * p < .05, ** p < .01, *** p < .001 
Standard errors in parentheses.   

≠ coeff. 
p < 0.6 

≠ coeff. 
p < 0.4 

≠ coeff. 
p < 0.9 
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Figures 
Figure 1 

 

 
 

 

 

Did the firm have an approved cytotoxic anti-cancer drug before 1983?* 
Source: FDA-CDER Oncology Tools List, FDA approved drugs list, PDR collection 1947-2005. 

Has the firm derived meaningful yearly 
revenue (as proxied by positive sales) 
from old-technology anti-cancer drugs in 
the period 1990-2002, or had a generic 
version introduced?**  
Source: Company Annual Reports, Med 
Ad News Top 500 Prescription Drugs 
Reports, Company’s Customer Service 
Center (1-800 phone numbers) 

Does the firm have a targeted anti-cancer 
drug in clinical trials?  
Source: Pharmaprojects 1989-2004 

Does the firm have a targeted anti-cancer 
drug in clinical trials?  
Source: Pharmaprojects 1989-2004 
 

Did the firm derive revenue from other market(s) 
before entering the market for anti-cancer drugs 
under the new technology (i.e., with targeted 
drugs)?  
Source: Company Websites (Corporate History 
section) 

Yes  No  

Yes  

No  

Incumbent, 
investing in the 
new technology 

Incumbent, NOT 
investing in the 
new technology 

No  

Firm is not in the market for 
anti-cancer drugs 

Yes  

Diversifying 
entrant 

De Novo 
entrant 

* This requirement ensures that the firm was an incumbent to the market prior to its investment in new-technology 
anti-cancer drugs (as opposed to just deciding to enter the market investing in both old and new technologies in 
parallel).  The year 1983 was when the first Targeted Anti-Cancer Drug was launched on the market, and I there-
fore use it as a milestone. 
** This requirement ensures that the firm did not leave the market and come back to it because of the new tech-
nology’s effect on lowering barriers to entry. If a firm exits a market before the transition due to the radical tech-
nological change starts, then that firm is not in the market at the time of the radical change and therefore is not an 
incumbent.  If it stays away from the market, then it is out of the scope of relevance for this study.  If it comes 
back after several years, investing in the new technology, then it is a diversifying entrant.   

Yes  No  
Yes  No  
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Figure 2 

The Three Phases of Evolution of Large-Molecule Drugs in the Biotechnology Revolution 
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