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ABSTRACT 

Current policy discussions on offshoring mostly focus on its impact on lower skilled 

manufacturing and services jobs, assuming that higher-value-added jobs and, especially, the 

location of innovation activities are not affected by offshoring. Contrary to this view, we suggest 

that innovation mainly driven by R&D activities can also move abroad as a result of offshoring. 

We suggest that the movement of innovation abroad will be conditioned by the nature of 

technology innovation processes, in particular knowledge spillovers, causing some innovation 

activities to remain in the US while driving other activities away. To explore this idea we 

conduct an in-depth study of the rare earth industry which provides critical raw materials for 

numerous technology based applications. This industry is pertinent because it has experienced 

significant supply chain relocation away from the US and towards developing countries. Using 

industry accounts and patent information, we examine the impact of the movement of rare earth 

production from the US to China on the location of rare earth innovation over the past two 

decades. We find that, while supply chain offshoring has caused rare earth magnet innovation 

activities to move away from the US, innovation activities in rare earth catalysts remains in the 

country. Direct observations and industry reports suggest this dichotomous response to supply 

chain internationalization is driven by the role of knowledge spillovers across value chain actors 

and the changing nature of technology innovation processes. We employ citations by rare earth 

technology patents to perform regression analyses and develop a model that empirically validates 

these critical drivers in the co-location of supply chain and innovation activities.  
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1 INTRODUCTION 

After a high-grade deposit was found in California in the early 1950s, the US quickly 

became a dominant producer of rare earth elements (atomic numbers 21, 39, 57-71). This led to 

US developments in large-scale separation techniques for these elements and, subsequently, to 

significant investment in researching potential uses for the elements. This resulted in the 

development of important and diverse technology based applications throughout the 1970s and 

1980s, including ceramics, catalysts, magnets, batteries and phosphors. However, over the past 

20 years, the supply chains of rare earth based applications have been offshored from the US to 

Asia. In 2006,  over 97% of rare earth raw materials originate in China (USGS, 2007). Such 

changes have led the International Herald Tribune (Lague, 2006) to suggest that “controlling the 

supply of these minerals gives China a strategic advantage as it seeks to build powerful high-tech 

industries.”  

Most research to date on internationalization and offshoring suggests this industry 

evolution should not negatively impact the ability and involvement of the US in innovation 

activities related to rare earth elements. The global supply and production networks should result 

in lower costs for individual firms, leading to expanded markets, lower prices for consumers, 

increased resources for R&D activities and the creation of new business opportunities for 

existing and new firms (Aron and Singh, 2005; Farrell, 2005; Branstetter, 2006). Other 

researchers also suggest that similar benefits for firms and national economies arise as firms 

access local knowledge and learn about complementary technologies not readily accessible at 

home locations (Dunning, 1995; Florida, 1997; Zander, 2002). 

However, many industry representatives have voiced concerns about the ability of the US 

to maintain leadership in rare earth technology based applications (Haxel et al., 2002). In fact, 
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US patenting activity in rare earth based technologies has been declining since 1990, the year by 

which a significant level of rare earth materials were produced in Asia (Fifarek et al., 2007). Yet, 

this trend is not uniform. For example, the US has continued to be a strong leader in innovation 

in catalyst applications of rare earths, while innovation in rare earth magnet technology 

applications has moved away from the US. 

These initial findings may call into question our understanding of the impacts of 

internationalization and offshoring on a home region and the common policy approaches to 

address these trends. Researchers, corporate executives and policy makers typically assert that 

offshoring benefits national home economies as long as displaced workers are absorbed into 

other positions where they will be able to generate greater value to the economy (Feenstra, 1998; 

Jaffee, 2004). Therefore policies typically focus on moving firms and individual workers hurt by 

internationalization into more value added activities by providing generous severance packages, 

job-retraining programs and continuing-education grants to upgrade worker skills. The idea 

behind these programs is that a nation whose jobs are being displaced by offshoring ought to 

specialize in higher-value-added work, which combined with productivity gains from offshoring, 

leads to the improvement of a nation’s welfare. Furthermore, positions in R&D in particular are 

those thought to be less affected by offshoring and, in fact, considered to be a desired goal in 

terms of alternative occupations to those being displaced. 

Industry evolution and observed geographic relocation of R&D in the rare earths industry 

away from the US suggests there is a more important question not yet being properly addressed: 

Under what conditions can technology sectors offshore low-skill supply chain operations such as 

raw material production or manufacturing, while effectively maintaining higher-skill R&D 

business functions in the home country?  
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Although international supply chains, including offshoring, are associated with the 

development of firm-level capabilities to coordinate geographically dispersed networks of tasks 

and production activities (Levy, 2005), many higher-value-added innovation activities depend on 

complex interactions among different value chain segments that require face-to-face contact 

(Leamer and Storper, 2005). These critical interactions can be jeopardized by increasing 

geographic distances between business units as they are offshored. When this happens, managers 

may subsequently choose to offshore engineering work and R&D so that this work can be more 

geographically aligned with critical offshore activities. Such a domino effect is consistent with a 

looming concern voiced by some academics and the greater public that innovation will also be 

offshored, ultimately affecting the ability of home economies to maintain their economic growth 

and leadership (Horvit, 2004; Hira and Hira, 2005). Thus, answering the question above entails a 

critical understanding of the conditions under which R&D activities are likely to follow the 

relocation of production and service positions and the conditions under which they remain in the 

home country. 

This paper aims to advance our understanding of the critical drivers for the movement of 

innovation activities away from the US following the internationalization of supply chain and 

production activities; conversely, the paper also identifies drivers that may keep innovation 

activities in the home country. In particular, it will look at role of knowledge spillovers as an 

important force explaining these movements. The research uses two technology sectors that are 

part of the rare earth industry, catalysts and magnets, to identify critical factors that influence the 

location of innovation activities following the offshoring of low technology operations in the rare 

earth industry supply chain. The analysis draws from firm- and industry-level unstructured 

interviews that identify the nature of innovation processes for these technologies and suggest 



 5 

critical drivers that impact the location of innovation activities. The analysis then uses detailed 

information from a subset of over 75,000 patent applications filed between 1975 and 2002 that 

document the national location of innovation activities in rare earth catalyst and magnet 

technology. Specifically, we use citations data from patents to empirically test whether the 

importance of knowledge spillovers for the innovation process impacts the relocation of 

innovation activities following the internationalization of supply chain and production activities.  

We find that rare earth magnet innovation is moving away from the US while in rare 

earth catalysts it is remaining in the US, since the internationalization of supply chain and 

production activities. Furthermore, we find that as the amount of rare earth magnet innovation is 

increasingly conducted abroad, US rare earth magnet patents rely significantly more on local 

knowledge, while patenting activity outside of the US rely significantly less. This suggests that 

innovation highly dependent on local US knowledge remains in the US while other innovation 

activities highly dependent on knowledge increasingly located abroad move away to access 

critical knowledge being produced elsewhere. In each case, the location of a focal innovation 

activity is dependent on the importance of access to local knowledge spillovers. Meanwhile, US 

and foreign rare earth catalyst patents both rely significantly more on US knowledge following 

the relocation of the supply chain. This continued leadership of the US in rare earth catalyst 

innovation suggests that technology characteristics as well as national policies can also drive 

leading technology developments to continue to be located in a region, even when the supply 

chain relocates elsewhere. 

The conclusions of this paper indicate the need to reframe the discussion on appropriate 

responses to offshoring. Policy discussion needs to shift away from focusing on moving up the 

value added chain of activities. Rather, the debate needs to address what characteristics and 
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comparative advantages within nations drive innovation activities to remain localized, despite the 

emergence of international supply chains. In the future, if we hope to maintain a healthy rate of 

innovation in the US, it will be critical for policies to help firms and workers move into activities 

where the interactions between local business, institutions, and the technology environment 

matter such that innovation activities are more likely to stay nationally.  

The paper is organized as follows. First, we discuss the background of the rare earth 

industry, the technology applications of rare earth materials, the internationalization of the rare 

earth supply chain, and innovation trends within rare earth technologies. We then develop the 

theoretical background of the co-location of production and innovation activities. In the 

following section, we introduce our patent data and empirically test for the role of knowledge 

spillovers on the offshoring of innovation. Next we develop an innovation model that replicates 

the trends observed in the data, while providing further insight into the role of the nature of 

innovation processes and knowledge spillovers in the movement of innovation away from the 

US. Finally, we draw conclusions from this analysis and suggest future work.    

2 BACKGROUND OF RARE EARTHS 

2.1 Production and supply chain of rare earth raw materials  

The rare earth elements are a relatively abundant naturally occurring group of fifteen 

elements. Rare earths exhibit very similar chemical and physical characteristics, varying only 

slightly in their electronic configurations and ionic radii. Consequently, they were originally very 

difficult and costly to separate. Prior to 1950, rare earths were not commercially produced in 

significant quantities and mostly sold as naturally occurring mixtures of the individual elements, 

such as mischmetal. In the early 1950s, the US quickly became a dominant producer of rare earth 

raw materials after a high-grade bastnaesite deposit was found in Mountain Pass, CA. Early 
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development was supported largely by the sudden demand for the rare earth element, Europium, 

created by the commercialization of color television (Roskill Information Services Ltd., 1973). 

By 1965, the single deposit in Mountain Pass had become the most significant source of 

raw and processed rare earths in the world with reserves of 13 million metric tons. Other 

significant raw material sources included monazite extracted from Australia, India and Brazil but 

large scale separation and processing operations remained limited to the US and France. For 

example, the French firm Rhone-Poulenc (now Rhodia Rare Earths) purchased raw materials 

mostly from Australia and operated separation facilities in France and the US. Molycorp, Inc. in 

Mountain Pass was the only fully integrated mine-to-metals rare earth producer. Molycorp was 

also actively engaged in the production and sale of rare earth products which allowed them to 

gain a dominant position in the industry (Roskill Information Services Ltd., 1973).  

By 1982, the US, Australia, India and Brazil accounted for over 95% of world output, 

with the US bastnaesite deposit supplying over 50% of world output (Roskill Information 

Services Ltd., 1984). However, Australia, India, and Brazil exported raw rare earth materials to 

the US and France for further processing (Roskill Information Services Ltd., 1988). At this time 

new markets for high-quality, separated rare earths oxides and metals were beginning to develop, 

ensuring a growing market for rare earths in terms of value. This prompted Molycorp and 

Rhone-Poulenc to expand their separation and processing facilities.  

Throughout the 1980s, China significantly increased the supply of rare earths for sale in 

the international market by producing bastnaesite obtained as a by-product of iron ore mining in 

Inner Mongolia (Roskill Information Services Ltd., 1984). Between 1980 and 1987, Chinese 

production increased from 8% to 31% of the world total following chaotic and unplanned 

development (Roskill Information Services Ltd., 1988). The increasing market share gained by 
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low priced Chinese rare earths in the late 1980s impacted processors elsewhere, especially in the 

US. For example, in 1988, Research Chemicals, the largest US producer of rare earth metals, was 

taken over by Rhone-Poulenc. In 1990, Ronson Metals Corporation, manufacturers of mixed rare 

earths for 75 years, ceased operations and put all of their assets up for sale.  

In the late 1980s, the changing pattern of rare earth consumption away from mixed 

compounds towards high-purity, separated rare earths significantly affected the structure of the 

rare earth industry. New international entrants in rare earth processing emerged to meet the 

higher demand for separated materials, including smaller processors in Japan, as well as 

Treibacher Chemische Werke, Th. Goldschmidt, Rare Earth Products Ltd. and AS Megon in 

Europe. However, rare earth processing remained dominated by Molycorp, Inc. in the US and by 

Rhone Poulenc, which maintained processing facilities in France and the US (Roskill 

Information Services Ltd., 1988).  

In 1990 the structure of the Chinese rare earth industry as well as production and export 

levels were reorganized by the central government. Two years later, the Chinese premier, Deng 

Xiaoping, coined the slogan, “There is oil in the Middle East, there is rare earth in China” 

(Lague, 2006). By that time, Yujiu (1992) reported 33 Chinese state owned rare earth enterprises 

(12 mining plants and 21 separation facilities) existed producing about 200 specifications of rare 

earth materials. Afterwards, rare earth producers in China significantly increased their 

production of high purity separated rare earths, moving from less than 10% to 50% of production 

by 1997 (Roskill Information Services Ltd., 1998). Concurrently with these changes, the impacts 

elsewhere in the rare earth industry were even more significant. In 1993, Dowa Rare Earths 

Company was forced to close their plant in Japan because China began producing high quality 

material at 60% of their market price. In 1994, Nippon Rare Earths, a joint venture between 
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Sumitomo Metal Mining Company of Japan and Rhone Poulenc of France based in Japan, 

discontinued operations. Mitsubishi of Japan also closed their subsidiary company, Asian Rare 

Earths based in Malaysia and Mitsui Mining and Smelting in Japan suspended their long term 

supply contracts. Meanwhile, production of rare earth raw materials from Australia declined as a 

consequence of growing supplies of rare earth ores from China and restraints concerning 

disposal of the radioactive wastes associated with monazite extraction. Consequently, the price 

of monazite peaked in 1990 (Roskill Information Services Ltd., 1994). This in combination with 

increased production in China prompted Rhone Poulenc and W.R. Grace and Company of the 

US, two of the major rare earth processors once heavily dependent on Australian ores, to begin 

purchasing rare earth chlorides from China. 

Since the 1990s, China has continued to increase its dominance in the production of rare 

earth raw materials (Figure 1) and processed rare earths (Table 1). At the same time, production 

operations elsewhere suffered economic and environmental setbacks. Throughout the 1990s 

many Japanese companies transferred technology assets to China to secure rare earth supplies, 

effectively aiding China’s move into the integrated production of rare earth products. In March 

1998, Molycorp, Inc. suspended production at its processing plant due to environmental concerns 

over its wastewater pipeline (Roskill Information Services Ltd., 1998). Then in 1999, Rhodia 

Rare Earths consolidated extraction and separation operations to processing facilities in France 

and China. As a result of this move their US rare earths separation facilities were closed, with 

much of the equipment being transferred to Rhodia’s joint venture with a Chinese rare earth firm 

(Roskill Information Services Ltd., 2001).  
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Figure 1 Global production of rare earth oxides, 1950-2003 (Haxel et al., 2002) 

Table 1 The growth of the Chinese rare earth industry (mt rare earth oxides contained) (Kingsnorth, 

2006) 

 Average Yearly Production 

  1981-90 1991-95 1996-99 2000-02 2003-04 

Separated REs % of 

Processed  RE 
6% 18% 32% 53% 80% 

Separated REs Exported  255 3,400 14,000 19,000 45,000 

Proportion of Separated 

REs in Exports 
6% 23% 35% 45% 70% 

Total Processed RE 

Exported 
4,300 14,800 40,000 42,200 64,300 

 

Since establishing a significant share of the market, China has continued to invest in rare 

earth materials. For example, the Chinese Ministry of Science and Technology announced a 

national basic research program in 1997 where one of the high-priority projects was “Basic 

research in rare earth materials” (Lei, 1998). Today, China alone produces over 97% of the 

world’s supply of rare earths, roughly 120,000 mt (USGS, 2007), and nearly 75% of the world’s 

supply of separated rare earths. 
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To get an overall picture of the geographic changes in the rare earth industry including 

extraction, separation, supply and demand, and technical applications we examined 11 editions 

of rare earth industry reports compiled by Roskill Information Services located in the UK. The 

reports were published between 1973 and 2001. According to these comprehensive reports, after 

1990 China is the most critical geographic location for the rare earth industry, as shown in Figure 

2. Increasing levels of Chinese dominance in rare earth materials led researchers at the United 

States Geological Service to suggest that “the United States is in danger of losing its 

longstanding leadership in many areas of REE technology” (Haxel et al., 2002). The danger is 

rising because "China is cornering the market for an obscure group of minerals [rare earths] that 

are vital to high-technology industry" (Lague, 2006). To better understand the impact of the 

movement of rare earth supply chain and production activities away from the US on the location 

of higher value added activities, we examine the location of rare earth innovation activity using 

patents in the next section.  
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Figure 2 Rare earth industry reports 1977-2001, authors’ own review 

 (Roskill Information Services Ltd., 1977; 1984; 1988; 1991; 1994; 1998; 2001). 
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2.2 Rare earth technology innovation 

The trends in the location of rare earth innovation activities are identified using USPTO 

patents and shown in Figure 3. The patent data include two types of innovation activities: (1) 

innovations in the extraction, production and separation of rare earths, and (2) innovations in 

technology applications for which rare earths are a necessary component. The majority of the 

patents are of the latter type. Figure 3 focuses on innovation in the US precisely because it was 

originally the dominant country in rare earth patents and therefore it had the potential to see 

greater adverse effects from supply chain internationalization. Using these patent trends, Fifarek 

et al. (2007) find that US leadership in rare earth technology innovation has been eroding since 

1990.  
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Figure 3 Rare earth patent trends, 1974-2002: US vs. NonUS (Fifarek et al., 2007). 
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Figure 3 shows that the rate of US patenting activity in rare earth based technologies has 

been, on average, declining since 1990. Yet, this trend is not uniform across rare earth 

technology applications. For example, Figure 4 shows that the US has continued to be a strong 

leader in innovation in catalyst applications of rare earths, while innovation in permanent magnet 

technology applications has moved away from the US. The dichotomy of these responses to 

significant supply chain internationalization makes these two technologies excellent case studies 

to explore critical drivers that lead R&D activities to stay in a home country or to follow the 

offshore relocation of supply chain and production activities.  
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Figure 4 Rare earth permanent magnet and catalyst technology innovation trends, 1976-2002. 

Interviews with firm and industry leaders and a review of critical industry reports help 

formulate a preliminary hypothesis, leading to an empirical test and model. The two major uses 

in terms of volume and value of rare earth catalyst compounds are petroleum fluid cracking 

catalysts and automobile exhaust emission control. Production of these technology based 

applications is dominated by large global companies that maintain manufacturing facilities 

throughout the world. For example, the US corporation Engelhard, which produces both major 
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applications of rare earth catalysts, maintains production facilities in USA, Europe, South Africa, 

Korea, Japan, India, and China (Roskill Information Services Ltd., 2001).  

Accounts by industry representatives suggest that R&D activities in rare earth catalyst 

technology are driven by cost reduction efforts, as well as national environmental policies and 

strategies. The role of policy in catalyst innovation is confirmed by Lee et al. (2007), which find 

that US technology-forcing auto emission standards induced technology innovation in, among 

other things, catalytic converters for which rare earths are a critical component. Accounts also 

suggest that rare earth catalysts are a modular component for automobiles and petroleum 

refining. Over 50% of the cracking units in operation in Europe in the 1990s were reported to be 

using catalysts that had only been introduced in the prior three years (Roskill Information 

Services Ltd., 2001), indicating that new catalysts replace older catalysts without requiring 

significant upgrades or redesigns for petroleum refining processing equipment. Similarly, auto 

catalysts are an exhaust after-treatment that can be developed separately from the rest of the 

automobile, allowing corporations to specialize in the production and development of auto 

catalysts. These properties of rare earth catalyst technology allow the separation of supply chain 

and production activities from innovation activities. Furthermore, the key rare earth elements 

used for catalysts are Lanthanum and Cerium, which are the most abundant and least expensive 

rare earth materials, thereby discounting the importance of interactions between particular raw 

material suppliers and catalyst producers. These characteristics have fueled a strong continued 

leadership of the US in rare earth catalyst innovation activities throughout our study time period 

evident in Figure 4, despite the movement of rare earth supply chain and production activities 

away from the US. 
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On the contrary, since the development of rare earth permanent magnet materials, their 

use in conventional applications often requires a complete redesign of the product to fully take 

advantage of the unique and powerful properties of samarium-cobalt (SmCo) and neodymium-

iron-boron (NdFeB) magnet alloys (Roskill Information Services Ltd., 1998). In fact, Trout and 

Zhilicihev (1999) suggest some of the potential benefits of the high energy product and low raw 

material cost of NdFeB magnet materials have yet to be achieved because of design flaws in 

technical applications of NdFeB magnets.  

Unlike rare earth catalyst manufacturers that continue to maintain US production 

facilities, permanent magnet manufacturers have discontinued their US operations. Meanwhile, 

the Chinese share of NdFeB magnet production increased from 14.4% in 1988 to nearly 40% in 

1997 (Dongpei and Qiming, 1999). Trout (2002) suggests that the powerful combination of 

locally available rare earths, inexpensive labor and a desire to make value-added products has led 

to a large percentage of rare earth magnets and products containing magnets being exported from 

China. Such trends have quickly altered the availability of tacit knowledge related to producing 

and supporting permanent magnet products and innovation in the US. Informal conversations 

with one firm representative revealed that removing manufacturing from the US has also led to 

the removal of over 90% of domestic R&D activities on rare earth permanent magnet materials.  

These observations suggest rare earth magnet technology relies heavily on supplier, 

producer and customer interactions and associated knowledge spillovers across the supply chain, 

which are easier to leverage if the iterating parties are geographically close. This helps explain 

the movement of innovation away from the US following the internationalization of rare earth 

supply chain and production activities, evident in Figure 4.  
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Magnequench, Inc. is a clear firm-level example of the impact of the internationalization 

of supply chain and production activities. Originally a business unit within General Motors, 

Magnequench filed a key patent application on the material composition of NdFeB permanent 

magnets in 1982. Four years later, they opened a large permanent magnet production facility in 

Indiana. The company quickly became the top producer of neodymium magnetic powders and 

magnets and leader in innovation in the NdFeB permanent magnet market. However, the 

internationalization of their supply chain and production activities quickly impacted the location 

of their innovation activities. In 2002, three years after establishing production facilities in 

China, Magnequech closed the Indiana production facility. Meanwhile, the company established 

a centralized R&D technology center in Research Triangle Park, North Carolina. Then in 2004, 

Magnequench finally offshored their R&D technology center to Singapore in 2004. They cited 

geographic proximity to the source of raw materials and downstream users as the main reasons 

for their offshoring decisions (Magnequench, 2005).  

These contrasts between the critical factors in the natures of rare earth catalyst and 

magnet innovation processes lead to the need for systematic examination of drivers that impact 

the location of innovation activities following the internationalization of supply chain and 

production activities. In this paper, we utilize patent citation data to examine the role of 

knowledge spillovers as such a driver. In the case of rare earth catalysts, innovation activities can 

be pursued independently from upstream suppliers, suggesting a limited opportunity for the 

transfer or spillover of knowledge across different actors in the supply chain. But in the case of 

rare earth magnets, the full potential benefits of new magnetic materials are only realized in 

combination with complementary innovations throughout the supply chain. Rare earth magnet 

innovation activities thus require the continuous exchange of knowledge across suppliers, 
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producers and customers, or, in other words, there exists a high degree of opportunity for 

knowledge spillovers. Thus, in the next section we begin by examining the theory behind the role 

of knowledge spillovers in the location of innovation activities.  

3 THEORETICAL BACKGROUND: Knowledge spillovers and the location of 

innovation activities 

Existing literature suggests that successful innovation happens through a delicate balance 

within a system that includes clients, suppliers, R&D units, and the financial system (Lundvall, 

1992; Edquist, 1997; Mills et al., 2004; Chapman and Corso, 2005). A similar view is defended 

by the literature on innovation clusters (Porter, 1990; Porter, 1998) which focuses on the 

importance of geographic proximity between the organizations of a system for innovation. This 

is further supported by an emerging perspective that looks at a firm as part of an industrial 

ecology (Ricart et al., 2004) and identifies the importance of diversity within a geographic 

location for innovation. The underlying concept for these studies is the importance of knowledge 

transfers within systems and locations for innovation.  

A transfer of knowledge is identified as a knowledge spillover when investments in 

knowledge creation by one party also benefit other parties without them necessarily having to 

pay as much for the same knowledge. Existing work has generally concluded that knowledge 

spillovers are geographically localized (Jaffe et al., 1993; Audretsch and Feldman, 1996; 

Almeida and Kogut, 1999; Branstetter, 2006). The common argument for the geographic 

localization of knowledge spillovers comes from the notion that knowledge transfer requires 

effective communication of codified as well as tacit elements. While codified knowledge can 

easily be transferred across distances, the transfer of tacit knowledge typically requires direct 

face-to-face interactions between individuals (Zander and Kogut, 1995; Hansen, 2002). 
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Regardless, both codified and tacit technical knowledge are people and institution embodied, 

making these types of knowledge difficult to transfer and often requiring close interactions 

between physical systems and individuals (Greeno and Moore, 1993). The local nature of 

knowledge transfer has been explored in particular by measuring the importance and diffusion of 

knowledge spillovers in patent citations in the US (Jaffe et al., 1993). 

The importance of geographic localization in knowledge spillovers has remained a 

consistent perspective despite significant levels of internationalization over the past 20 years. 

The pattern of multinational corporate foreign investment in R&D over this time period reflects 

this consistency albeit in a dichotomous way. Early foreign direct investment was oriented 

towards exploiting existing capabilities in new foreign markets. As a result, R&D was kept 

centralized in the home region, with some limited remote investment to support foreign 

manufacturing facilities (Vernon, 1966; Caves, 1971; Hymer, 1976; Rugman, 1981). Later, when 

R&D investment abroad began to emerge with a stronger presence, it was seen as a tool to access 

foreign scientific knowledge and technological capabilities considered to be relevant for the firm 

(Florida, 1997; Kuemmerle, 1999; Serapio et al., 2000). In both contexts, the geographic 

localization of knowledge spillovers requires local involvement to access knowledge and social 

networks that facilitate the transfer of external knowledge to the firm. Further studies have found 

that multinational companies consider potential knowledge spillovers as opportunities when 

making R&D investment in foreign subsidiaries (Feinberg and Gupta, 2004) and when locating 

foreign manufacturing operations (Chung and Alcacer, 2002). 

In a more recent paper, Macher and Mowery (2004) go further to suggest that when 

knowledge spillovers or other capabilities among segments of the value chain matter for 

innovation, innovation activities are likely to follow the internationalization of supply chain 
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activities. On the other hand, if innovation is not critically dependent on local knowledge 

spillovers, the location of segments of the industry value chain should have little influence on the 

location of innovation activities. Yet, this idea has not been directly addressed in the literature.  

To further explore the notion put forward by Macher and Mowery (2004) and advance 

our understanding regarding the conditions under which companies choose to relocate their 

innovation activities, we consider two technology segments expected to have different reliance 

on knowledge spillovers. In fact, while overall figures suggest that the location of rare earth 

innovation activities is moving away from the US, one can observe that some innovation 

activities remain in the US and others do not. Our empirical analysis examines citations by 

patenting activity in rare earth catalyst and magnet technologies to assess the role of knowledge 

spillovers as a critical driver for these trends. 

4 Empirical Analysis 

This study uses patents issued by the United States Patent and Trademark Office 

(USPTO) as a proxy for innovative activity in rare earth catalysts and magnets. There is a 

substantial prior body of literature arguing that patents are a useful measure of innovative 

activity (Basberg, 1987; Acs et al., 2002). Although there are well documented limitations to the 

use of patent data, in particular the fact that not all innovations are patented, researchers claim 

that patent data can provide estimates of innovative activity at the firm, industry, sectoral and 

country levels (Pavitt, 1985; Archibugi and Pianta, 1996). Griliches (1990) as well as Patel and 

Pavitt (1995) have documented that patents are a reasonable proxy for innovation especially in 

high technology industries. 

While many studies support the use of patents as a measure of innovation output, this 

study is specifically interested in citations by a focal patent to knowledge contained within 
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previous patents. According to several researchers, patent citations are also one of the most 

traceable records to understand critical knowledge flows (Jaffe et al., 1993; Almeida, 1996; 

Mowery et al., 1996; Stuart and Podolny, 1996). Citations are included in patent applications by 

the inventor and the patent examiner to help delimit the patent grant by identifying “prior art” of 

relevance to the focal patent. Backward citations listed in a patent can be used to indicate the 

locations and timing of prior innovation activities that have generated knowledge useful for 

generating the given patent. Therefore, one can use citations to measure the nature of knowledge 

utilized for technology development in rare earth catalyst and magnet technology over time. 

These claims make patent studies a useful measure for innovation within a system boundary, as 

well as an assessment of prior knowledge utilized for the generation of new knowledge, and a 

good metric to address the role of local knowledge spillovers in the movement of innovation 

activities following the internationalization of supply chain and production activities. 

For this study, two regression models at the patent level are developed to statistically 

determine (1) if knowledge spillovers play a role in the nature of innovation processes for rare 

earth catalyst and magnet technology and (2) whether knowledge spillovers are a critical driver 

in the movement of innovation activities away from the US following the internationalization of 

the rare earth supply chain and production activities. If knowledge spillovers across the supply 

chain matter for the movement of innovation activities, then we should expect find that the 

relocation of the supply chain to Asia will command an increase in the share of innovation 

activities conducted outside of the US, which will simultaneously rely less on US knowledge, 

while innovation activities that do remain in the US will rely proportionally more on US 

knowledge.  
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4.1 Data development 

In this empirical analysis we use USPTO patenting activity in rare earth magnet and rare 

earth catalyst technologies over the time period 1976-2002. We utilize patent classifications 

provided by the USPTO to build the relevant patent datasets for rare earth magnet and catalyst 

technologies. This is accomplished by locating several patents that perfectly fit into each 

technology. Following the backward and forward citations of each patent and the citations of 

these citations, we compile an extensive list of patent classes that may correspond to each 

technology. From this classification list for each technology, 8 patent classes and 17 patent 

classes shown in 
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Table 2 were chosen to represent rare earth magnet and catalyst technology, respectively. The 

final patent datasets were then compiled using a keyword search within the previously chosen 

relevant patent classes. The keyword search was necessary to eliminate patents within a USPTO 

class that did not focus specifically on innovations dealing with rare earth elements. For 

example, in the description of patent class 148/101 a process for generating a ferrite permanent 

magnet material would qualify for inclusion in our dataset. However, the keyword search 

eliminates this patent, since we are only interested in process technology for manufacturing rare 

earth permanent magnet materials. The keyword search returned patents that contained rare earth 

keywords also shown in the first column of 
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Table 2 anywhere within the patent document.  
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Table 2 Keywords and USPTO classifications used to develop patent dataset 

Rare earth elements Rare earth Magnets Rare earth Catalysts 

Rare earth 148/301 502/304 

Lanthanide 148/302 502/303 

Lanthanum, La 148/303 502/302 

Cerium, Ce 148/315 502/314 

Praseodymium, Pr 148/101 502/320 

Neodymium, Nd 148/102 502/322 

Promethium, Pm 148/103 502/323 

Samarium, Sm 148/122 502/327 

Europium, Eu  502/332 

Gadolinium, Gd  502/341 

Terbium, Tb  502/346 

Dysprosium, Dy  502/348 

Holmium, Ho  502/351 

Erbium, Er  502/354 

Thulium, Tm  502/355 

Ytterbium, Yb  502/65 

Scandium, Sc  502/73 

Yttrium, Y   

Lutetium, Lu   

 

After removing patents assigned to individual inventors, the final combined dataset 

included 1879 patents of which 637 are rare earth magnet patents and 1242 are rare earth catalyst 

patents. 

The analysis uses four pieces of information found in patent applications: (1) location of 

innovation activities, defined as the home location of the first inventor, (2) patent application 

year, (3) complete patent classification list to identify technology classes, and (4) patent citations 

to identify knowledge used by the focal patent. The analysis then uses three pieces of 

information found in patents listed as citations: (1) patent number is used to identify “within 

technology” and “outside technology” knowledge (e.g., if the patent number listed as a citation 

for a magnet patent is included in the set of identified magnet patents, then it is identified as 

“within technology” knowledge), (2) location of the innovation activity that generated the cited 
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patent, defined as the home location of the first inventor, and (3) application year used to identify 

if the cited patent was applied for within seven years prior to the application of the citing patent.  

We limit citations to applications submitted within seven years prior to the application of 

the citing patent for two reasons. First, since our patent dataset covers the years 1975 to 2002, 

citations for a patent application in 1978 would have only three prior years of patents from which 

to draw. However, a patent applied for in 1995 would have 20 prior years of patents from which 

to draw. Therefore by limiting the citation lag to seven years all patents included in the citation 

dataset have an equal number of years from which to draw citations, thus limiting errors due to 

data truncation. Second, we are interpreting citations as “spillover knowledge,” or a measure of 

the new knowledge generated by a previous innovation activity and recorded in a patent that is 

subsequently utilized by a focal patent applied for at a later date. Thus, we follow the approach 

of Fifarek et al. (2007), where citations to patents applied for more than seven years prior are 

assumed to represent only codified knowledge, thus beyond the need for the transfer of tacit 

knowledge associated with spillovers. Moreover, as shown in Fifarek et al. (2007), minor 

changes to the cutoff year are not expected to influence the results.  

Using the patent information explained above we measure 10 variables for our two 

datasets of rare earth magnet and rare earth catalyst patent applications between 1982 and 2002. 

For each patent we measure the location of the first inventor’s home at the country level and the 

patent application year. We use this information to generate two dummy variables. The first 

dummy variable denotes whether the patent’s location is in the US or outside of the US (US). 

The second dummy variable denotes if the patent’s application year was before or after 1990 (d), 

which corresponds to the emergence of the Chinese as a significant producer of rare earth 

materials. As described earlier, Chinese production subsequently led to the internationalization 
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of the rare earth supply chain beginning with raw materials, moving to raw material processing 

and the production of rare earth technology applications. We base our choice of the year for the 

second dummy variable on trends in the production of raw materials (Figure 1) and in rare earth 

industry reports (Figure 2) because these trends are exogenous to changes in the nature of 

innovation processes in rare earth catalyst and magnet technology.  

The next four variables categorize the citations made by the focal patent. The first 

variable measures the number of citations made to patents contained within our main datasets 

representing rare earth catalyst or magnet technology and also generated by an innovation 

activity located in the US as measured by the location of the first inventor. This variable is called 

“US within technology knowledge (Cuw)”. If the focal patent is also generated by an innovation 

activity located in the US this variable represents local technical knowledge spillovers. For a 

technology where within technology knowledge spillovers matter for innovation activities, we 

expect this variable to receive the most citations by the focal patent.  

The second variable for citations is “NonUS within technology knowledge (Cnw)” which 

is similar to Cuw knowledge except that it was generated by innovation activities located outside 

of the US. If we again consider that the focal patent is generated by an innovation activity in the 

US, then this variable represents technical knowledge not easily accessible due to the increased 

difficulty of transferring knowledge. As suggested by other researchers, as an industry 

internationalizes and firms gain access to knowledge outside of their home country as well as 

develop decentralized and global R&D networks, we would expect this second variable of 

knowledge to receive an increasing amount of citations by focal patents over time. If knowledge 

spillovers matter for a technology, we would also expect the second citation variable to remain 

less important than local knowledge measured by the first citation variable. 
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The third and fourth variables for citations are “US outside technology knowledge (Cuo)” 

and “NonUS outside technology knowledge (Cno)”. These variables measure citations to patents 

that are not included in the patent datasets representing rare earth catalyst or magnet technology. 

We measure these variables because previous researchers have found that technical knowledge is 

often used for more than one technology application. As already mentioned, all citations to 

patents measured by any of the four variables but applied for more than 7 years prior to the citing 

patent’s application year are discounted from the data to avoid citation truncation issues and 

citation of codified knowledge. 

For the remaining patent level variables, we first develop a procedure to identify the 

complete technical classification list of knowledge developed and cited by a focal patent. This 

list is based on USPTO patent classifications. We begin with the complete list of classifications 

assigned by the USPTO to the focal patent. Then we examine the complete classification list of a 

patent cited by the focal patent. If the classification list of the cited patent contains no 

classifications in common with the first list, then the technical classification list for our focal 

patent is augmented with the main USPTO classification of the cited patent. If the classification 

list of the cited patent contains at least one common element, then no additional classifications 

are added to the list of classifications for the focal patent. This procedure is repeated for every 

patent cited by the focal patent to obtain the complete list of USPTO classifications that describe 

the knowledge contained in the focal patent.  

We use the technical classification list on the entire USPTO patent database to measure 

the number of available patents for citation that correspond to each of the four citation variables 

relevant for our estimation: “available US within technology patents (Auw)”, “available NonUS 

within technology patents (Anw)”, “available US outside technology patents (Auo)”, and “available 
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NonUS outside technology patents (Ano)”. A USPTO patent contains knowledge that is available 

for the focal patent to have used if the following two conditions are satisfied (1) if the application 

year of the USTPO patent occurs less than seven years prior to the application year of the focal 

patent and (2) the complete list of classifications assigned to the USPTO patent contains at least 

one common classification with the complete technical classification list generated for the focal 

patent.  

Given the USPTO patent is found to be available for the focal patent to cite, the USPTO  

patent is measured by one of our four variables Auw, Anw, Auo, or Ano. If the USPTO patent is 

contained in our rare earth magnet or rare earth catalyst dataset then it is assigned as an available 

within technology patent (Auw or Anw). Otherwise, the USPTO patent is assigned as an available 

outside technology patent (Auo or Ano). If the USPTO patent is from the US then it is assigned as 

an available US patent (Auw or Auo). Otherwise, the USPTO patent is assigned as an available 

NonUS patent (Anw or Ano). 

The above data directly measured and counted using the rare earth magnet and rare earth 

catalyst data are then combined to form two additional variables. First, for each focal patent we 

calculate the percent of knowledge utilized by the focal patent that was previously generated by 

innovation activities located in the US (perus) using Equation 1. We then calculate the percent of 

patents available for citation that originate from US innovation activities (perus_avail) using 

Equation 2. 
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The descriptive statistics for the data are shown first for rare earth catalysts and second for rare 

earth magnets in Table 3. The correlation statistics are shown in Table 4. In the next section, we 

describe the regressions employed to analyze the nature of knowledge utilized by innovation 

activities in the US and abroad following the internationalization of supply chain and production 

activities for rare earth catalyst and magnet technologies. The regression is performed at the 

patent level. 

Table 3 Descriptive statistics 

 Variable Description Mean SD Min Max 

R
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Cuw US within technology citations 0.852 1.410 0 14 

Cnw NonUS within technology citations 1.013 1.817 0 19 

Cuo US outside technology citations 2.382 3.648 0 37 

Cno NonUS outside technology citations 1.351 2.069 0 22 

Auw Available US within technology patents 109.684 42.526 3 263 

Anw Available NonUS within technology patents 122.733 75.668 1 345 

Auo Available US outside technology patents 345.696 399.305 0 10645 

Ano Available NonUS outside technology patents 306.044 338.430 1 5377 

US 0-1 location dummy variable 0.498 0.500 0 1 

d 0-1 time period dummy variable 0.629 0.483 0 1 

perus_avail Percent US patents available 0.543 0.118 0.332 0.929 

perus
b 

Percent US citations made 0.543 0.355 0 1 
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Cuw US within technology citations 0.837 1.392 0 11 

Cnw NonUS within technology citations 1.896 2.584 0 26 

Cuo US outside technology citations 0.350 0.864 0 11 

Cno NonUS outside technology citations 0.578 1.125 0 9 

Auw Available US within technology patents 41.082 22.821 1 106 

Anw Available NonUS within technology patents 89.460 53.944 5 229 

Auo Available US outside technology patents 151.937 210.334 0 2329 

Ano Available NonUS outside technology patents 214.129 336.653 1 3102 

US 0-1 location dummy variable 0.270 0.444 0 1 

d 0-1 time period dummy variable 0.647 0.478 0 1 

perus_avail Percent US patents available 0.388 0.086 0.176 0.657 

perus
d 

Percent US citations made 0.326 0.350 0 1 

a: Observations = 1242 unless otherwise specified 

b: Observations = 1148 

c: Observations = 637 unless otherwise specified 

d: Observations = 570 
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Table 4 Correlation statistics 

  1 2 3 4 5 6 7 8 9 10 11 
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1. Cuw            

2. Cnw 0.39           

3. Cuo 0.23 -0.09          

4. Cno 0.06 0.15 0.38         

5. Auw 0.21 0.30 -0.01 0.12        

6. Anw 0.15 0.37 -0.07 0.20 0.80       

7. Auo 0.08 0.04 0.41 0.29 0.11 0.15      

8. Ano 0.08 0.18 0.28 0.40 0.26 0.44 0.84     

9. US 0.20 -0.15 0.34 0.04 -0.03 -0.13 0.09 0.01    

10. d 0.03 0.16 0.01 0.23 0.24 0.57 0.23 0.43 -0.12   

11. perus_avail 0.07 -0.28 0.21 -0.21 -0.33 -0.73 -0.02 -0.38 0.26 -0.59  

12. perus
b 

0.26 -0.36 0.39 -0.27 -0.15 -0.29 0.08 -0.07 0.45 -0.16 0.42 
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1. Cuw            

2. Cnw 0.45           

3. Cuo 0.23 0.07          

4. Cno 0.00 0.03 0.24         

5. Auw 0.40 0.34 0.06 -0.08        

6. Anw 0.20 0.36 -0.11 -0.01 0.65       

7. Auo 0.01 -0.04 0.23 0.37 -0.04 0.06      

8. Ano -0.02 -0.04 0.15 0.38 -0.04 0.08 0.95     

9. US 0.23 -0.04 0.29 -0.00 0.04 -0.18 -0.01 -0.05    

10. d -0.02 0.16 -0.07 0.06 0.34 0.64 0.05 0.09 -0.21   

11. perus_avail 0.06 -0.19 0.25 0.02 -0.07 -0.52 0.17 -0.01 0.25 -0.47  

12. perus
d 

0.43 -0.28 0.40 -0.22 0.09 -0.19 -0.3 -0.09 0.34 -0.23 0.33 

a: Observations = 1242 unless otherwise specified 

b: Observations = 1148 

c: Observations = 637 unless otherwise specified 

d: Observations = 570 

 

4.2 Regression Analysis 

4.2.1 Dependent variable 

The dependent variable in the first regression analysis is the share of US citations (perus) 

made by a focal patent i. The regression analysis is conducted separately for rare earth catalyst 

and magnet technologies. For both rare earth catalysts and magnets, we see from Figure 4 that 

the percentage of innovation activities conducted in the US is decreasing over time, albeit 

decreasing significantly more for rare earth magnet technology. Therefore, if knowledge 

spillovers are important for technology development in either technology, we would expect 
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perus to have a decreasing trend over time as innovation activities conducted abroad utilize local 

knowledge also located abroad. However, this decreasing trend may also suggest that for US 

innovation activities, knowledge spillovers are becoming less important as a global knowledge 

network develops perhaps driven by the internationalization of supply chain activities and 

offshoring decisions by US firms. If an increasing trend is found for perus, it suggests the 

location of innovation activities is driven by something other than knowledge spillovers because 

both innovation activities located in the US and abroad are increasingly dependent on knowledge 

generated by prior US innovation activities.  

Since the dependent variable is a percentage that takes the values of 0 and 1 as well as 

percentages between 0 and 1, we perform the standard logit transformation which is given by  

  



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




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i
i

perus

perus
perusL

1
ln  (3) 

To directly interpret the coefficients of our regressions, we will need to transform the 

results back into the original percentage metric.
1
  

4.2.2 Model and critical variables 

The purpose of the regression is to determine if there is a statistically significant change 

in the propensity for rare earth magnet and rare earth catalyst innovation activities in the US to 

utilize previously generated US knowledge versus similar knowledge generated abroad following 

the internationalization of supply chain and production activities. To perform this evaluation, two 

independent variables are of critical importance. The first is a 0-1 variable (US) that is employed 

                                                 

1
 Before performing the logit transformation (Equation 3) substitutions are necessary for 0 and 100 percent 

data points which present problems for the transformation and must be adjusted away from the extreme values. We 

employ the remedies discussed in Neter, J., Wasserman, W. and Kutner, M.H. (1983). Applied linear regression 

models. Homewood, Ill., R.D. Irwin.  
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to measure the overall propensity difference for previously generated US knowledge to be 

utilized by innovation activities in the US and abroad. If knowledge spillovers are significant for 

the development of rare earth catalyst or magnet technology, we would expect the coefficient for 

US to be positive and significant indicating that innovation activities in the US rely 

proportionally more on knowledge previously generated in the US than abroad controlling for 

the amount of knowledge available in each region. A positive and significant coefficient also 

indicates that innovation activities outside of the US use a lower percentage of knowledge 

generated by innovation activities in the US, which is outside of the country of the first inventor 

listed on foreign focal patents.  

A second 0-1 variable (d) is utilized to capture significant changes in the propensity 

trends before and after 1990, which corresponds to emergence of Chinese dominance in the 

production of rare earth materials. If a positive and significant coefficient is found for d, then 

prior knowledge generated by innovation activities located in the US is more important for the 

development of new knowledge within the US and abroad.  

We also employ one critical control variable (perus_avail) that controls for the percent of 

patents available for citation that were generated by previous innovation activities located in the 

US. Assuming that the probability of citing an available US patent is equal to the probability of 

citing an available NonUS patent and that our focal patent randomly makes citations, then the 

expected percent US citations (perus) will equal the percent of US patents available 

(perus_avail) for citation. This variable also controls for changes in the share of knowledge 

available in countries over time, which is driven by changes in the share of innovation activities 

located in these countries. 



 33 

A linear regression model is used to estimate the impact of the independent variables on 

the propensity for a successfully applied patent to utilize knowledge previously generated by US 

innovation activities. In Model 1 we test for a significant change in the propensity for innovation 

activities to utilize US knowledge after 1990 in both the US and abroad. 

Model 1a is specified in the following form: 
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To determine whether any trend in US innovation activities using US knowledge is 

driven by knowledge spillovers as opposed to a decreasing percentage of innovation activities in 

the US, we include an interaction term (US*d). This term is used in Model 1b, specified as 

follows:  
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5 Empirical Results and discussion 

5.1 Regression results 

 Table 5 shows the regression results at the patent level for rare earth catalyst and magnet 

technologies. The first important observation is that the coefficient for US is positive and 

significant for both rare earth catalysts and magnets across all models. Thus innovation activities 

undertaken within the US rely significantly more on knowledge from other US innovation 

activities than on knowledge from activities performed outside the country – given what would 

be expected from a random draw based on availability. This suggests that knowledge spillovers 

play a role in technology development for both catalysts and magnets.  
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Table 5 Regression results at patent level by technology, rare earth magnet and catalyst 

Dependent Variable: ln(perus/(1-perus)) 

Logistic transform of percent US citations 

 Rare earth Catalyst Rare earth Magnet 

Model 1a 1b 1a 1b 

US 0.90*** 0.87*** 0.60*** 0.28** 

0-1 dummy location (0.06) (0.10) (0.09) (0.14) 

D 0.26*** 0.24** -0.15 -0.35** 

0-1 dummy time period (0.08) (0.10) (0.10) (0.12) 

US*d  0.047  0.57** 

US after 1990  (0.13)  (0.19) 

perlocal_avail 4.26*** 4.28*** 2.85*** 2.67*** 

Random citation control (0.32) (0.32) (0.54) (0.54) 

Intercept -2.71*** -2.71*** -1.73*** -1.52*** 

 (0.20) (0.20) (0.24) (0.25) 

Adj R
2
 0.34 0.34 0.17 0.18 

Observations 1148 1148 570 570 

Standard errors in parentheses 

** p ≤ 0.05 

*** p ≤ 0.001 

 

The next important results relate to the coefficient for the time period dummy variable 

(d). In Model 1a and 1b for rare earth catalysts, we find the coefficient to be positive and 

significant (0.26, p < 0.001 and 0.24, p < 0.001, respectively). This indicates that, despite the 

internationalization of the rare earth supply chain after 1990, knowledge generated in the US in 

this area has grown in importance for subsequent innovation activities both in the US and abroad. 

This suggests that, while knowledge spillovers play an important role in catalyst technology 

development in the US, innovation activities located abroad are also increasingly utilizing 

knowledge generated in the US in spite of the increased difficulty of transferring tacit knowledge 

across large geographical distances. The importance of US knowledge for innovation activities 

abroad confirms that, as industry observations previously described in Section 2.2 imply, 

technology characteristics as well as national environmental policies may play a more significant 

role than knowledge spillovers in driving leading technology developments in rare earth catalysts 
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to continue to be located in the US and subsequently used for rare earth catalyst innovation 

activities located in the US and abroad. This drives multinational corporations that represent a 

significant percentage of catalyst technology development to monitor competitor and 

institutional innovation activities in the US. The coefficient for the interaction term (US*d) also 

confirms this result because it is insignificant, suggesting that changes in the nature of innovation 

processes for rare earth catalysts are similar despite their geographic location and not 

significantly impacted by the movement of supply chain and production activities away from the 

US. 

In contrast, in Model 1a for rare earth magnets we find an insignificant coefficient for d. 

At a first glance this could suggest that, despite the internationalization of the rare earth supply 

chain, production and innovation activities after 1990, there is no change in the role that the 

knowledge generated by previous US innovation activities plays in new magnet technology 

development in the US or abroad. Yet, the results of Model 1b for rare earth magnet technology 

imply a slightly different perspective. As it can be seen, the d coefficient is negative and 

significant (-0.35, p < 0.01), while the interaction term (US*d) is positive and significant (and 

0.57, p < 0.01) Thus, what we observe suggests the growing importance of local knowledge 

spillovers for rare earth magnet innovation activities located in the US as well as abroad. There is 

a compound effect, whereby innovation activities outside of the US after 1990 rely less on 

knowledge generated by US innovation activities (and more on knowledge generated outside the 

US), while innovation activities in the US rely proportionally more on prior US innovative effort. 

Overall, the regression results imply that locations and technologies respond differently 

to the internationalization of relevant supply chain and production activities. Furthermore, for 

technologies where supply chain knowledge spillovers are critical for subsequent innovation 
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activities, innovation is likely to follow the internationalization of supply and production away 

from the home country. Our results for magnets are consistent with direct industry observations 

previously described that indicate supplier, producer and customer interactions and associated 

knowledge spillovers are critical in the industry, thus suggesting that access to knowledge 

spillovers within the supply chain played a role in the movement of innovation offshore. 

Meanwhile, US rare earth magnet innovation activities that remain in the US after 1990 shows 

evidence of a relative increase in local knowledge spillovers, despite the growth in offshoring 

innovation activities after 1990.  

Although the regression results are consistent with the notion that access to knowledge 

and subsequent spillovers can drive the location of innovation activities, at least for some 

activities, it is important to note that they are also consistent with an alternate explanation based 

on unobserved heterogeneity. Our interpretation of the regression results assumes that the nature 

of rare earth magnet innovation processes, i.e., the average propensity for focal patents to cite 

available US patents, remains consistent before and after 1990. This assumption drives our 

interpretation of the regression results to suggest that rare earth magnet innovation activities that 

otherwise would have been performed in the US have relocated offshore to access critical 

knowledge moved offshore by the internationalization of supply chain and production activities. 

If the nature of the innovation processes in the US changed after 1990, so that all innovative 

activity simply relies more on local knowledge, rather than global knowledge, the role of 

spillovers in driving the increasing share of innovation activities located offshore ought to be 

discounted. In this competing explanation, the decreasing share of rare earth magnet innovation 

conducted within the US evident in Figure 4 would be the result of something other than the 

relocation of innovation activities to access local knowledge spillovers.  



 37 

Thus, to distinguish between our competing explanations, we develop a model with an 

underlying structure for the nature of innovation processes which (1) explicitly identifies the role 

of knowledge spillovers, (2) controls for the nature of innovation processes to rely on local 

knowledge throughout our study time period, and (3) is able to replicate the key regression 

results that US rare earth catalyst and magnet innovation activities rely more on US knowledge 

after 1990. Through the model, we expect to be able to identify the innovation activities that rely 

on proportionately more knowledge generated abroad make up a decreasing share of US 

innovation activities following the internationalization of supply chain, production, and 

innovation activities. Such a result suggests that these innovation activities have relocated abroad 

to minimize the cost of supplier, producer and customer interactions and therefore maximize 

access to associated knowledge spillovers. Meanwhile, US innovation activities that rely on 

knowledge generated by previous local innovation activities remain in the US, thereby making 

up an increasing share of US innovation activities. A description and specification of the model 

is found in the following section. 

5.2 Modeling knowledge spillovers and the location of innovation activities 

To capture a process by which innovation activities move away from a home country, we 

create a model that considers a focal innovation (i) in a given technology class (c) (e.g., rare 

earth magnets), shown in the left column of Figure 5. The focal innovation is generated by an 

activity that takes place in time period t and is located in a home country (e.g., located in US) 

with probability pt. For this focal innovation under consideration, there exists a set of prior local 

knowledge generated by other activities also located in the same home country (Al). Similarly, 

there exists a relevant set of prior global knowledge located outside of the home country (Ag). 

Prior knowledge is developed by firms within the same technology class arena, firms outside of 
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this technology arena, universities, and institutions such as national laboratories and government 

organizations.  

 

Period (t) Period (t+1) 

  

Figure 5 Model diagram 

In our model, we consider that the focal innovation can be categorized based on the 

nature of the innovation process for the activity from which it was generated. To make the 

analysis more tractable, we will simply define two types of activities that are differentiated by 

their propensity to use various sets of prior knowledge. The first activity type is defined as local 

innovation activities which rely mostly on local knowledge spillovers and therefore have a 

greater propensity to use available local knowledge. The second activity type is defined as global 

innovation activities which have a greater propensity to use available knowledge located abroad. 

The propensities for local and global innovation activities to use local and global knowledge 

describe the nature of the innovation process for each activity. 

We then model the innovation processes (quantity of prior local and global knowledge 

utilized by the focal innovation) as a series of discrete binomial trials conditioned on the 

knowledge available locally and abroad. As shown in Figure 5, a single piece of knowledge 
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drawn from the set of prior knowledge pertaining to the focal innovation is utilized by the focal 

innovation with probability s. In other words, if a scientist working on our focal innovation 

activity, categorized as a local innovation activity, surveyed the available local knowledge (Al) 

applicable to the technology being developed, the probability that any single piece of such 

knowledge is utilized by the scientist is sl,l. Similarly, any single piece of the set of global 

knowledge (Ag) is utilized by that same local innovation activity with probability sl,g. The 

expected quantity of knowledge utilized by the focal innovation is then the probability of 

utilization multiplied by the quantity of available knowledge or sk,j*Aj, where k defines if the 

innovation is generated by a local or global innovation activity and j signifies local or global 

knowledge. By matching our data to this model using a mixture method described in the next 

section, we are able to estimate the nature of innovation processes for local and global 

innovation activities and the share of each activity before the internationalization of supply 

chain, production and innovation activities. 

Of crucial importance to our study, the model allows an analysis of what may happen to 

innovation due to the movement of supply chain, production and innovation activities away from 

the home country. In the right hand side of Figure 5, we show an example of such analysis for 

period t+1. There are two critical changes between period t and t+1 associated with these 

movements. First, in period t+1 the probability of the focal innovation being generated by an 

innovation activity located in the home country (e.g., the US) decreases (pt+1 < pt) due to supply 

chain internationalization. This then impacts the second critical change, which is the relative 

increase in the share of available global knowledge that can be utilized by the focal innovation 

(the Al and Ag in Figure 5). Finally, it is important to reflect on how the nature of local and global 

innovation processes (the sx,x variables) change across time. Our baseline analysis will force this 
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structure to remain the same for local innovations (e.g., sl,l,t = sl,l,t+1). In this context, changes in 

the average probability of innovation activities within our focal country to cite local knowledge 

will be the result only of a change in the shares of local and global innovation activities, driven 

by supply chain relocation and not the structure of the innovation process in how it relies on 

local vs. global knowledge. In the case of rare earth magnets, if the observed trends in the 

regression analysis presented in Section 4.2.2. are indeed the result of an underlying knowledge 

spillovers process, we expect the model to be able to also show an increase in the share of local 

innovation activities in time period t+1, which follows the internationalization of supply chain 

and production activities. 

To empirically estimate the probabilities and shares in the model and draw comparisons 

with the regression analyses, we organize the set of prior knowledge into 4 broad categories 

similar to the variables described in Section 4.1. The first category is prior knowledge in 

technology class c also generated in the home location, which is called “local within technology 

knowledge (Clw)”. Prior knowledge measured by this variable is available locally which permits 

face-to-face interactions which facilitate the transfer of critical tacit knowledge. The individuals 

actively participating in the focal innovation also have the absorptive capacity to utilize the prior 

knowledge in this category because the knowledge is contained within a similar technology 

space. For an innovation activity located in the US, this category is analogous to “US within 

technology knowledge (Cuw)” used in the regression analyses. 

The second set of knowledge is “global within technology knowledge (Cgw)” which is 

defined as prior knowledge in technology class c generated outside of location l. While this 

second set of knowledge is contained within the same technology space as the focal innovation 

(i), the geographical distance increases the difficulty of transferring critical tacit knowledge. The 
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third and fourth sets of prior knowledge are “local outside technology knowledge (Clo)” and 

“global outside technology knowledge (Cgo)”. These sets of knowledge are outside of the 

technology class c of the focal innovation. Again, the proximity of local outside technology 

knowledge to the location of the focal innovation permits the effective communication of critical 

tacit knowledge. 

We then organize the sets of previously generated knowledge available to the focal 

innovation in four matching categories: “available local within technology knowledge (Alw)”, 

“available global within technology knowledge (Agw)”, “available local outside technology 

knowledge (Alo)”, and “available global outside technology knowledge (Ago)”, respectively. 

Again, for innovation activities located in the US the category “available local within technology 

knowledge (Alw)” is analogous to “available US within technology knowledge (Auw)” used in our 

regression analyses.  

Since we organize knowledge as within or outside a particular set of technology 

knowledge, the expected quantity of knowledge in any category is also a function of the 

probability for the focal innovation to utilize prior within technology knowledge (w) and prior 

outside knowledge (1-w). We then employ a mixture model to incorporate our two unobservable 

types of innovations, where the focal innovation is categorized as a local innovation activity with 

probability a and a global innovation activity with probability (1-a). Therefore, the expected 

number of citations made to local within technology patents will a combination of the probability 

of local and global innovation activities citing local within technology patents and the 

probability that the focal innovation is identified as a local and a global innovation activity. If we 

consider a set of innovations in a home country after finding the optimal parameters for the 

model, then a represents the share of focal innovations resulting from local innovation activities. 
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Finally, to maintain the nature of innovation processes in time period t and t+1, we 

introduce three parameters. We utilize a dummy variable (d) where d=1 if the focal innovation 

takes place in time period t+1 and zero otherwise. We then employ 

ad = change in the share of local innovation activities in time period t+1 and 

wd = change in the propensity for innovation activities to utilize within technology 

knowledge.  

Therefore, it follows that our model is specified by the following system of equations that 

describe the quantity of knowledge utilized by innovation activities in a home country in time 

period t and t+1. 

        ilwglididllididilw AsdwwdaasdwwdaaC ,,,, 1   (6) 

        igwggididlgididigw AsdwwdaasdwwdaaC ,,,, 1   (7) 

            ioglididllididiuo AsdwwdaasdwwdaaC ,,,, 111   (8) 

            ioggididlgididino AsdwwdaasdwwdaaC ,,,, 111   (9) 

Following our definition of types of innovation activities, the following conditions must 

be hold,  

sl,l > sl,g (10) 

sg,l < sg,g (11) 

The above relationships have been compiled in 
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Table 6 to describe the nature of knowledge utilized by sets of innovations in technology class c 

in time period t and t+1. 

 



 44 

Table 6 Relationships describing the nature of knowledge used for innovations in technology class c in 

time periods t and t+1. 

 Time period (t) Time period (t+1) 

Percent US innovations pt pt+1 

 Local Global Local  Global  

% innovation activities (a) (1-a) (a+ad) (1-(a+ad)) 

Local within technology knowledge wsl,l wsl,g (w+wd)sl,l (w+wd)sl,g 

Global within technology knowledge wsg,l  wsg,g (w+wd)sg,l  (w+wd)sg,g 

Local outside technology knowledge (1-w)sl,l (1-w)sl,g (1-(w+wd))sl,l (1-(w+wd))sl,g 

Global outside technology  knowledge (1-w)sg,l (1-w)sg,g (1-(w+wd))sg,l (1-(w+wd))sg,g 

 

Our model summarized in 



 45 

Table 6 captures key parameters that describe the nature of innovation activities and the role of 

knowledge spillovers in the movement of innovation away from a home country. In making 

innovation decisions firms recognize not only the location of markets for their technology, but 

also the relative share of innovation activities (p) being conducted within their home location. 

Over time the share of innovation activities conducted within their home location influences the 

availability of local knowledge (Alw and Alo) and global knowledge (Agw and Ago). Understanding 

the markets for their technology and the availability of knowledge for their innovation activities, 

firms further recognize the importance of local knowledge spillovers (sl) or the ability to access 

global knowledge networks (sg). The process of interaction between these parameters then 

impacts the propensity of innovation activities to be conducted in the home location. 

In the next section, we describe our empirical estimation of the model parameters for rare 

earth catalyst and magnet technology located in the US. We are specifically interested in the 

change in the share of local innovation activities (ad) in the US from period t to period t+1. In 

other words, for US rare earth catalyst and magnet technology we empirically estimate the 

change in the share of innovations generated by local innovation activities controlling for the 

nature of innovation processes. If knowledge spillovers are important, we expect to see the share 

of local innovation activities increase when the share of available local knowledge is decreasing. 

Such a finding would suggest that the innovation activities that remain in the home country do so 

because the critical knowledge needed also remains in the home country. Meanwhile, innovation 

activities which depend on local knowledge that has followed the offshoring of supply chain and 

production activities will move away from the home country and towards another location where 

these critical knowledge spillovers are more easily accessible.  



 46 

Such a parameter represents unobserved heterogeneity in our regression models. With 

this model specification, we can control for this unobserved heterogeneity in the nature of 

innovation processes between time periods in our regression model and measure changes in the 

share of local versus global innovation activities in a particular location. We are also able to 

verify that the estimated parameters exhibit results similar to those obtained by the regression 

models. The model therefore allows the direct examination of the importance of knowledge 

spillovers driving innovation away from the US following the internationalization of supply 

chain and production activities.  

5.3 Estimating model parameters for US rare earth magnet innovation activities 

The innovation model for innovation activities is based on the set of Equations 6-9 

containing a set of parameters  
jdjgglggllljdj wwssssaa ,,,,,, ,,,,,,,  that can be estimated 

through a weighted OLS fit of the data to the model. Because the set of Equations 6-9 is 

nonlinear, the optimization was performed numerically by employing the nonlinear 

programming algorithms called Lipschitz Global Optimizer (LGO) and Branch-And-Reduce 

Optimization Navigator (BARON) linked to the General Algebraic Modeling System (GAMS). 

We employ our innovation model for innovation activities located in the US. We do not 

employ the model for innovation activities located outside of the US because these activities are 

occurring in a diverse set of locations including Japan, China, Germany and France. This creates 

an additional level of unobserved heterogeneity which is not controlled for by our model 

specification. As previously explained the data are patent applications for rare earth catalyst and 

magnet technology located in the US between 1982 and 2002.  

To match the parameters to our data we minimize the weighted sum of squared errors 

(SSE) objective function shown below in Equation 12. 
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Minimize SSE 
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 (12) 

where 

       glididllididlw sdwwdaasdwwdaa ,, 1   (13) 

       ggididlgididgw sdwwdaasdwwdaa ,, 1   (14) 

           glididllididlo sdwwdaasdwwdaa ,, 111   (15) 

           ggididlgididgo sdwwdaasdwwdaa ,, 111   (16) 

lwC   = standard deviation of the number of local within technology patents cited (Clw), 

lwC   = standard deviation of the number of global within technology patents cited (Cgw), 

loC   = standard deviation of the number of local outside technology patents cited (Clo), and 

goC   = standard deviation of the number of global outside technology patents cited (Cgo), and  

subject to the following additional constraints to ensure that the optimal solution   is consistent 

with model assumptions, 

1,,,,,,,0 ,,,,  dgglggllld wwssssaa  (17) 

sl,l > sl,g (18) 

sg,l < sg,g. (19) 

10  daa  (20) 

10  dww  (21) 
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By weighting each sum of squared errors component by the inverse of the standard 

deviation of the dependent variable, we force the parameters to match the first moment of the 

citation variables with the least variation at the patent level.  

5.4 Model parameters 

The results for the direct optimization of our model parameters for rare earth catalyst and magnet 

technology innovation activities located in the US before and after 1990 are shown in Table 7.
2
 Due to the 

nonlinear interactions between the parameters, several steps are required to fully interpret the model results. 

The first step is to employ the optimal parameters to fill in the values of the probability table constructed in 

                                                 

2
 Due to the nature of this nonlinear system of regression equations, the computational models need a set of 

robustness tests and additional validation to completely analyze our direct estimation of the parameters. One 

possibility is to use bootstrapping methods to understand the correlations between the parameters and map a larger 

solution space instead of the global minima presented here in Table 7. 
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Table 6. These values are found in  

Table 8. The second step involves calculating the conditional probability of utilizing local knowledge for 

local and global innovation activities in both time periods. Local knowledge consists of the variables that 

measure  “local within technology knowledge” and “local outside technology knowledge”. Since these 

categories are mutually exclusive, the conditional probability of citing local knowledge is found by adding the 

probability of citing knowledge in each category and then dividing by the total probability of citing any 

available knowledge, where the total probability of citing available knowledge is the sum of each column in  

Table 8. As expected the conditional probabilities (see Table 9) for citing local 

knowledge for local and global innovation activities are equal in both time periods since our 

model controls for the nature of innovation processes.  

In the third step, we calculate the weighted average conditional probability of utilizing 

local knowledge in both time periods using the percent of local and global innovation activities 

as the weights. This is a critical robustness test in which we compare the model results to our 

regression results. These values are discussed below. Given that our model results mirror the 

regression results, in the fourth step, we directly interpret the change in the share of local 

innovation activities. After analyzing the results for rare earth catalysts and magnets separately, 

we then draw comparisons between the two technologies.  

First, we examine the results for rare earth magnets. According to our model, rare earth 

magnet innovation activities located in the US can be categorized as local or global innovation 

activities depending on the nature of their innovation processes. Table 9 shows that for local and 

global innovation activities the conditional probability of utilizing local knowledge is 0.788 and 

0.455, respectively. These natures of innovation processes are maintained in both time periods. 

Before 1990, 22% of rare earth magnet innovation activities are categorized as local innovation 

activities (a = 0.223), while after 1990, 62% are categorized as local innovation activities (a + ad 

= 0.620). Using these shares as weights, the weighted average conditional probability of citing 

local (US) knowledge is 0.529 before 1990 and increases to 0.661 after 1990. This is consistent 

with our previous regression results in Model 1b for rare earth magnet technology, which 
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suggested the localization of knowledge utilized for US innovation activities through the 

coefficient of the interaction term (US*d) (0.57, p < 0.01).  

In the model we see, as expected, that the share of local innovation activities increases 

from 22% to 62%. Moreover, this is observed while keeping the overall structure of the 

innovation processes the same before and after 1990 and allowing only the probability that a 

focal innovation activity is located in the US to change (and consequently the relative share of 

available knowledge in the US and abroad). So, what is happening is that the innovation 

activities that stay in the US are precisely those that rely proportionately more on knowledge 

located in the US while those that rely on knowledge now located abroad move away from the 

US (due to the transition of the supply chain to Asia).  

Both the regressions and modeling suggest that on average US rare earth magnet 

innovation activities are more dependent on local knowledge spillovers after 1990. But the model 

allows measurement of the share of innovation activities with different natures of innovation 

processes that are behind this increase in the utilization of US knowledge after 1990. This lends 

support to the idea that the decrease in the percent of rare earth magnet innovation activities 

located in the US is driven by the importance of knowledge spillovers across the supply chain 

and subsequent movement of innovation activities abroad to access knowledge.  

Table 7 Model parameters 

  Magnet Catalyst 

a Share of local innovations 0.223 0.574 

ad Change in share of local innovation after 1990 0.397 -0.235 

sl,l Probability a local innovation cites an available Local patent 0.049 0.040 

sl,g Probability a global innovation cites an available Global patent 0.037 0.001 

sg,l Probability a local innovation cites an available Global patent 0.013 0.007 

sg,g Probability a global innovation cites an available Global patent 0.045 0.012 

w Probability of citing within technology patents 0.906 0.426 

wd Change in probability of citing within technology patents after 1990 -0.011 0.214 

pt Share of US innovations before 1990 0.396 0.577 

pt+1 Share of US innovations after 1990 0.201 0.452 

ESS Estimated sum of squares 1667.297 13371.092 
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RSS Residual sum of squares 2457.612 15931.290 

r
2 

Coefficient of Determination 0.404 0.456 

 

 

Table 8 Model probability tables 

Rare earth Magnets     

 Before 1990 After 1990 

Percent US innovations 40% 20% 

 Local Global Local Global 

% innovation activities  22% 78% 62% 38% 

Local within technology knowledge 0.044 0.034 0.044 0.034 

Global within technology knowledge 0.012 0.041 0.012 0.040 

Local outside technology knowledge 0.005 0.004 0.005 0.004 

Global outside technology  knowledge 0.001 0.004 0.001 0.005 

     

Rare earth Catalysts     

 Before 1990 After 1990 

Percent US innovations 58% 45% 

 Local Global Local Global 

% innovation activities  57% 43%  34% 66%  

Local within technology knowledge 0.017 3.8e-4 0.025 0.001 

Global within technology knowledge 0.003 0.005 0.004 0.007 

Local outside technology knowledge 0.023 0.001 0.014 3.2e-4 

Global outside technology  knowledge 0.004 0.007 0.002 0.004 

Table 9 Conditional probability of citing knowledge for USlocal and USglobal innovation activities 

Rare earth Magnets     

 Before 1990 After 1990 

 Local Global Local Global 

% innovation activities 22% 78% 62% 38% 

Local knowledge 0.788 0.455 0.788 0.455 

Global knowledge 0.212 0.545 0.212 0.545 

     

Rare earth Catalysts     

 Before 1990 After 1990 

 Local Global Local Global 

% innovation activities 57% 43% 34% 66% 

Local knowledge 0.852 0.071 0.852 0.071 

Global knowledge 0.148 0.929 0.148 0.929 

 

Second, we examine the results for rare earth catalysts. Table 9 shows that for local 

innovation activities, the conditional probability of utilizing local knowledge is 0.852, while for 

global innovation activities it is 0.071. These natures of innovation processes are again 

maintained in both time periods. Before 1990, 57% of rare earth catalyst innovation activities are 
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categorized as local innovation activities (a = 0.574), while after 1990, 34% are categorized as 

local innovation activities (a + ad = 0.339). The optimal parameter value ad = -0.235 suggests a 

globalization of rare earth catalyst innovation activities following the internationalization of 

supply chain and production activities. However, using the shares of local and global innovation 

activities as weights, the weighted average conditional probability of citing local (US) 

knowledge is 0.519 before 1990 and then decreases to 0.336 after 1990. This is inconsistent with 

our previous regression results in Model 1b shown in Table 5 for rare earth catalyst technology, 

which suggested that after 1990 US innovation activities, similar to innovation activities located 

abroad, utilized more US knowledge through the coefficient for d (0.24, p < 0.05).  

Since our model results for rare earth catalysts do not confirm the regression results, this 

suggests the alternative explanation of heterogeneity for the observations of the regression 

analysis. While our current specification of the model restricts the nature of innovation processes 

to remain constant before and after 1990, industry accounts previously described in Section 2.2 

suggest that the locations of rare earth catalyst innovation activities are also influenced by 

leading customer and national environmental policies and have moved towards a more modular 

innovation production function. New catalysts are developed autonomously from customer 

architectures easily replacing older catalysts without impacting system design. Therefore, local 

knowledge spillovers throughout the supply chain are playing a less prevailing role in the 

development of new knowledge. Furthermore, as discussed in Section 2.2 the specialization of 

rare earth catalyst knowledge enables individuals involved in innovation activities to more easily 

monitor and absorb similarly specialized knowledge generated abroad. This is evident by the 

dominance of multinational corporations in rare earth catalysts, which maintain production and 

research and development facilities worldwide.  
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To test this alternative explanation, we can change our model and remove the restriction 

that forces the natures of innovation processes to remain the same following the 

internationalization of supply chain and production activities. We empirically estimate this 

unrestricted model by fitting the data to the model using the parameters 

 
tjtggtlgtgltlltjt wssssa ,,,,,,,,,, ,,,,,  before 1990 and 

 1,1,,1,,1,,1,,1,1 ,,,,,   tjtggtlgtgltlltjt wssssa  after 1990, separately. By allowing the nature of 

rare earth catalyst innovation processes before 1990 to be different than after 1990, we expect to 

obtain results that are consistent with the key regression result, thus lending force to this 

alternative explanation of the data.   

The results for the direct estimation of our unrestricted model parameters for rare earth 

catalyst technology innovation activities are shown in 



 54 

Table 10. Following the interpretation procedure previously described, we find that the weighted 

average conditional probability of citing local (US) knowledge is 0.254 before 1990 and 

increases to 0.523 after 1990. This result agrees with our regression results, both suggesting that 

after 1990 US rare earth catalyst innovation activities are more likely to cite available US 

knowledge. According to the model results, the conditional probability of citing available US 

knowledge for local innovation activities was 0.902 before 1990 and 0.776 after 1990, 

suggesting that these innovation activities utilize more global knowledge following the 

internationalization of rare earth supply chain and production activities . Meanwhile, for global 

innovation activities the conditional probability of citing available US knowledge was 0.009 and 

0.341 before and after 1990, respectively. This suggests that for innovation activities categorized 

as global local US knowledge become more important. Unlike the results of the restricted model, 

the unrestricted model suggests that there is an increase in the share of local innovation activities 

after 1990 (at = 0.275 and at+1 = 0.419).  
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Table 10 Catalyst unrestricted model parameters 

  Before 1990 After 1990 

A Share of local innovations 0.275 0.419 

sl,l Probability a local innovation cites an available Local patent 0.087 0.28 

sl,g Probability a global innovation cites an available Global patent 1.2e-4 0.006 

sg,l Probability a local innovation cites an available Global patent 0.009 0.008 

sg,g Probability a global innovation cites an available Global patent 0.013 0.012 

w Probability of citing within technology patents 0.473 0.670 

pt Share of US innovations before 1990 0.577 0.452 

ESS Estimated sum of squares 4959.597 8054.924 

RSS Residual sum of squares 3901.648 11995.209 

r
2 

Coefficient of Determination 0.560 0.402 

 

By modeling the natures of innovation processes for rare earth catalyst and magnet 

technology development, we have found that knowledge spillovers can play an important role in 

what innovation stays and what innovation moves away from a home country in response to the 

internationalization of supply chain and production activities. But we have also found that in 

certain technologies, the changing nature of innovation activities such as the fragmentation or 

modularization of the innovation production function can mitigate the importance of geographic 

proximity and local knowledge spillovers. In these cases, it is critical to recognize alternative 

innovation drivers such as leading regulators and policy makers.  

6 Conclusions 

This research shows that trends in the location of innovation activities for two industries, 

rare earth magnets and catalysts, exposed to the internationalization of supply chain and 

production activities are different. We find that rare earth magnet innovation is moving away 

from the US while for rare earth catalysts innovation is remaining in the US. Using direct 

industry observations and patent data, our regression and modeling results suggest that if 

knowledge spillovers among segments of an industry supply chain are important and significant 

supply chain and production activities are relocated, then the location of R&D activities are 
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likely to follow the internationalization of the supply chain. Furthermore, if most innovations are 

reliant on local knowledge spillovers and innovation increases outside of the home country then 

some innovation highly dependent on knowledge contained within the home country such as 

niche applications will stay while other innovation activities will move to access critical 

knowledge now being produced elsewhere. Yet, as noted in rare earth catalyst innovation, 

technology characteristics as well as national policies can also drive leading technology 

developments to continue to be located in a region, even when the supply chain relocates 

elsewhere. 

In face of these conclusions, important business and public policy challenges arise. First, 

when making international supply chain and offshoring decisions, firms need to evaluate how 

important knowledge spillovers are for their innovation dynamics as well as the source location 

of this critical knowledge. Firms also need to evaluate the internal and external drivers of 

innovation in their technology arenas.  

Existing studies have highlighted how offshoring will affect the operational context of the 

home base and the need to carefully consider what processes to offshore as a function of this risk 

(Aron and Singh, 2005). While international supply chains and offshoring may bring innovation 

opportunities (Quinn, 1999), especially through the contact and interaction with new locations 

and partners (Ricart et al., 2004), it also brings risks that firms need to evaluate and act upon. In 

addition, the findings of this research offer a complementary view to the perspective of Chapman 

and Corso (2005), which assert the need for firms to increasingly plan their innovation within a 

collaborative supply chain environment. While their discussion focuses mostly on the inter-firm 

relations, our results suggest that firms need to also consider partner location and the likelihood 

of knowledge spillovers in the collaborative equation. 
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Second, while most public policy discussion on offshoring has been related to upgrading 

worker skills for more value added activities, the results of this paper show that this discussion 

needs to be reframed to question what innovation activities will stay in a home country and what 

innovation activities will move outside of the home country. These conclusions complement and 

extend emerging research which focuses on identifying what tasks or jobs will remain in the US 

and what tasks or jobs are able to be offshored. Leamer and Storper (2001) advanced that tasks 

involving codifiable information can be easily offshored while tasks dependent on tacit 

information will remain in the US, regardless of their skill level. Similarly, Levy and Murnane 

(2004), discuss how routine tasks are able to be offshored and non-routine takes will remain in 

the US. Finally, Blinder (2006) suggests there is a difference in the ability to offshore electronic 

and non-electronic tasks. Our own research suggests that knowledge spillovers across an industry 

supply chain may be a critical determinant of what activities, including higher value added 

activities such as R&D, are ultimately offshored rather than the skill or technology level of 

certain activities. 

This question is critical because offshoring has the ability to impact innovation dynamics 

at the country level as well as policy. While it is clear that protectionist public policies to prevent 

offshoring only weaken the global competitiveness of the US, it is critical to reflect on the role of 

public policy in a business environment where offshoring practices may lead, not only to job 

losses, but also a decline in innovation incentives for certain locations and technologies (Fuchs 

and Kirchain, 2005). Policies are likely to cluster in two extremes. On the one hand, just like 

facilitating the transition of workers displaced by offshoring decisions to other areas, policies 

may need to support quick redeployment of resources from areas of innovation that decline as a 

result of offshoring into new and more promising work. In the opposite extreme, the government 
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may need to provide support to areas subject to market failure in terms of national private R&D 

investment because of offshoring decisions. In such case, the existence of local knowledge is 

considered relevant for the innovation dynamics of the region or nation. It is critical to 

understand what characteristics and comparative advantages within regions drive innovation 

activities to remain localized despite the emergence of international supply chains. In the future, 

if we hope to maintain a healthy set of R&D activities in the US, it will be critical for policies to 

help move firms and workers into activities where the interactions between local business, 

institutions, and the local technology environment matters. 

Our understanding of these issues is still very limited and further work on how these 

policies affect a firm’s location and offshoring decisions is needed before implementing 

appropriate public policies to support and sustain US innovation competitiveness. We have 

identified that the importance or lack of importance of knowledge spillovers influences the risks 

of losing innovation capacity that are associated with offshoring. However, it is reasonable to 

expect that other criteria influencing offshoring decisions may produce confounding risks and 

benefits to innovation. Therefore, it is also crucial for subsequent research to further explore this 

issue in more detail. 
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